Employing different loss functions for the classification of images via supervised learning
Radu Boţ; André Heinrich; Gert Wanka
Open Mathematics (2014)
- Volume: 12, Issue: 2, page 381-394
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Aronszajn N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 1950, 68, 337–404 http://dx.doi.org/10.1090/S0002-9947-1950-0051437-7 Zbl0037.20701
- [2] Boţ R.I., Conjugate Duality in Convex Optimization, Lecture Notes in Econom. and Math. Systems, 637, Springer, Berlin-Heidelberg, 2010 Zbl1190.90002
- [3] Boţ R.I., Csetnek E.R., Heinrich A., On the convergence rate improvement of a primal-dual splitting algorithm for solving monotone inclusion problems, SIAM J. Optim., 2013, 23(4), 2011–2036 http://dx.doi.org/10.1137/12088255X Zbl1314.47102
- [4] Boţ R.I., Lorenz N., Optimization problems in statistical learning: Duality and optimality conditions, European J. Oper. Res., 2011, 213(2), 395–404 http://dx.doi.org/10.1016/j.ejor.2011.03.021 Zbl1222.90079
- [5] Boyd S., Parikh N., Chu E., Peleato B., Eckstein J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trendsc in Machine Learning, 2010, 3(1), 1–122 http://dx.doi.org/10.1561/2200000016 Zbl1229.90122
- [6] Chapelle O., Haffner P., Vapnik V.N., Support vector machines for histogramm-based image classification, IEEE Trans. Neural Networks, 1999, 10(5), 1055–1064 http://dx.doi.org/10.1109/72.788646
- [7] Geiger C., Kanzow C., Theorie und Numerik Restringierter Optimierungsaufgaben, Springer-Lehrbuch Masterclass, Springer, Berlin-New York, 2002 http://dx.doi.org/10.1007/978-3-642-56004-0
- [8] Joachims T., Learning to Classify Text Using Support Vector Machines, Kluwer Internat. Ser. Engrg. Comput. Sci., 668, Kluwer, Boston, 2002 http://dx.doi.org/10.1007/978-1-4615-0907-3
- [9] Kim K., Financial time series forecasting using support vector machines, Neurocomputing, 2003, 55(1–2), 307–319 http://dx.doi.org/10.1016/S0925-2312(03)00372-2
- [10] Lal T.N., Chapelle O., Schölkopf B., Combining a filter method with SVMs, In: Feature Extraction, Studies in Fuzziness and Soft Computing, 207, Springer, Berlin, 2006, 439–445 http://dx.doi.org/10.1007/978-3-540-35488-8_21
- [11] Mota J.F.C., Xavier J.M.F., Aguiar P.M.Q., Püschel M., D-ADMM: A communication-efficient distributed algorithm for separable optimization, preprint available at http://arxiv.org/abs/1202.2805
- [12] Noble W.S., Support vector machine application in computational biology, In: Kernel Methods in Computational Biology, MIT Press, 2004, 71–92
- [13] Pedroso J.P., Murata N., Support vector machines with different norms: motivation, formulations and results, Pattern Recognition Lett., 2001, 22(12), 1263–1272 http://dx.doi.org/10.1016/S0167-8655(01)00071-X Zbl0990.68117
- [14] Rifkin R.M., Lippert R.A., Value regularization and Fenchel duality, J. Mach. Learn. Res., 2007, 8(3), 441–479 Zbl1222.49052
- [15] Rockafellar R.T., Convex Analysis, Princeton Math. Ser., 28, Princeton University Press, Princeton, 1970 Zbl0193.18401
- [16] Ruschhaupt M., Huber W., Poustka A., Mansmann U., A compendium to ensure computational reproducibility in high-dimensional classification tasks, Stat. Appl. Genet. Mol. Biol., 2004, 3, #37 Zbl1082.92025
- [17] Shawe-Taylor J., Cristianini N., Kernel Methods for Pattern Analysis, Cambridge University Press, Cambridge, 2004 http://dx.doi.org/10.1017/CBO9780511809682 Zbl0994.68074
- [18] Sra S., Nowozin S., Wright S.J., Optimization for Machine Learning, MIT Press, Cambridge-London, 2011
- [19] Steinwart I., How to compare different loss functions and their risks, Constr. Approx., 2007, 26(2), 225–287 http://dx.doi.org/10.1007/s00365-006-0662-3 Zbl1127.68089
- [20] Stoppiglia H., Dreyfus G., Dubois R., Oussar Y., Ranking a random feature for variable and feature selection, Journal of Machine Learning Research, 2003, 3, 1399–1414 Zbl1102.68598
- [21] Suykens J.A.K., Vandewalle J., Least squares support vector machine classifiers, Neural Processing Letters, 1999, 9(3), 293–300 http://dx.doi.org/10.1023/A:1018628609742
- [22] Tibshirani R., Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 1996, 58(1), 267–288 Zbl0850.62538
- [23] Tibshirani R., Saunders M., Rosset S., Zhu J., Knight K., Sparsity and smoothness via the fused lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 2005, 67(1), 91–108 http://dx.doi.org/10.1111/j.1467-9868.2005.00490.x Zbl1060.62049
- [24] Tikhonov A.N., Arsenin V.Ya., Solutions of Ill-posed Problems, Scripta Series in Mathematics, Winston & Sons, Washington DC, 1977 Zbl0354.65028
- [25] Van Gestel T., Baesens B., Garcia J., Van Dijcke P., A support vector machine approach to credit scoring, Banken Financiewezen, 2003, 2, 73–82
- [26] Vapnik V.N., The Nature of Statistical Learning Theory, Springer, New York, 1995 http://dx.doi.org/10.1007/978-1-4757-2440-0 Zbl0833.62008
- [27] Vapnik V.N., Statistical Learning Theory, Adapt. Learn. Syst. Signal Process. Commun. Control, John Wiley & Sons, New York, 1998 Zbl0935.62007
- [28] Varma S., Simon R., Bias in error estimation when using cross-validation for model selection, BMC Bioinformatics, 2006, 7, #91
- [29] Wahba G., Spline Models for Observational Data, CBMS-NSF Regional Conf. Ser. in Appl. Math., 59, SIAM, Philadelphia, 1990 http://dx.doi.org/10.1137/1.9781611970128
- [30] Xiang D.-H., Zhou D.-X., Classification with Gaussians and convex loss, J. Mach. Learn. Res., 2009, 10, 1447–1468 Zbl1235.68207
- [31] Ying Y., Huang K., Campbell C., Sparse metric learning via smooth optimization, In: Advances in Neural Information Processing Systems, 22, NIPS Foundation, 2009, 2205–2213
- [32] MATLAB 8.0, The MathWorks, 2012, Natick, Massachusetts