Generalizations of the Jensen-Steffensen and related inequalities

Milica Bakula; Marko Matić; Josip Pečarić

Open Mathematics (2009)

  • Volume: 7, Issue: 4, page 787-803
  • ISSN: 2391-5455

Abstract

top
We present a couple of general inequalities related to the Jensen-Steffensen inequality in its discrete and integral form. The Jensen-Steffensen inequality, Slater’s inequality and a generalization of the counterpart to the Jensen-Steffensen inequality are deduced as special cases from these general inequalities.

How to cite

top

Milica Bakula, Marko Matić, and Josip Pečarić. "Generalizations of the Jensen-Steffensen and related inequalities." Open Mathematics 7.4 (2009): 787-803. <http://eudml.org/doc/269243>.

@article{MilicaBakula2009,
abstract = {We present a couple of general inequalities related to the Jensen-Steffensen inequality in its discrete and integral form. The Jensen-Steffensen inequality, Slater’s inequality and a generalization of the counterpart to the Jensen-Steffensen inequality are deduced as special cases from these general inequalities.},
author = {Milica Bakula, Marko Matić, Josip Pečarić},
journal = {Open Mathematics},
keywords = {Convex functions; Jensen-Steffensen inequality; Slater’s inequality; convex functions; Slater's inequality},
language = {eng},
number = {4},
pages = {787-803},
title = {Generalizations of the Jensen-Steffensen and related inequalities},
url = {http://eudml.org/doc/269243},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Milica Bakula
AU - Marko Matić
AU - Josip Pečarić
TI - Generalizations of the Jensen-Steffensen and related inequalities
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 787
EP - 803
AB - We present a couple of general inequalities related to the Jensen-Steffensen inequality in its discrete and integral form. The Jensen-Steffensen inequality, Slater’s inequality and a generalization of the counterpart to the Jensen-Steffensen inequality are deduced as special cases from these general inequalities.
LA - eng
KW - Convex functions; Jensen-Steffensen inequality; Slater’s inequality; convex functions; Slater's inequality
UR - http://eudml.org/doc/269243
ER -

References

top
  1. [1] Abramovich S., Klaričić Bakula M., Matić M., Pečarić J., A variant of Jensen-Steffensen’s inequality and quasi-arithmetic means, 2005, J. Math. Anal. Appl., 307, 370–386 http://dx.doi.org/10.1016/j.jmaa.2004.10.027[Crossref] Zbl1066.26012
  2. [2] Boas R.P., The Jensen-Steffensen inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 1970, 302–319, 1–8 Zbl0213.34601
  3. [3] Dragomir S.S., Goh C.J., A counterpart of Jensen’s discrete inequality for differentiable convex mappings and applications in information theory, Math. Comput. Modelling, 1996, 24(2), 1–11 http://dx.doi.org/10.1016/0895-7177(96)00085-4[Crossref] Zbl0862.94010
  4. [4] Dragomir S.S., On a converse of Jensen’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 2001, 12(2), 48–51 Zbl1054.26017
  5. [5] Dragomir S.S., Ionescu N.M., Some converse of Jensen’s inequality and applications, Rev. Anal. Numér. Théor. Approx., 1994, 23(1), 71–78 Zbl0836.26009
  6. [6] Elezović N., Pečarić J., A counterpart to Jensen-Steffensen’s discrete inequality for differentiable convex mappingsand applications in information theory, Rad Hrvat. Akad. Znan. Umjet., 2003, 481(14), 25–28 
  7. [7] Matić M., Pečarić J., Some companion inequalities to Jensen’s inequality, Math. Inequal. Appl., 2000, 3(3), 355–368 Zbl0968.26015
  8. [8] Pečarić J., A companion to Jensen-Steffensen’s inequality, J. Approx. Theory, 1985, 44(3), 289–291 http://dx.doi.org/10.1016/0021-9045(85)90099-1[Crossref] 
  9. [9] Pečarić J., A multidimensional generalization of Slater’s inequality, J. Approx. Theory, 1985, 44(3), 292–294 http://dx.doi.org/10.1016/0021-9045(85)90100-5[Crossref] 
  10. [10] Roberts A.W., Varberg D.E., Convex functions, Academic Press, New York-London, 1973 Zbl0271.26009
  11. [11] Slater M.L., A companion inequality to Jensen’s inequality, J. Aprox. Theory, 1981, 32(2), 160–166 http://dx.doi.org/10.1016/0021-9045(81)90112-X[Crossref] 
  12. [12] Steffensen J.F., On certain inequalities and methods of approximation, J. Inst. Actuaries, 1919, 51, 274–297 

NotesEmbed ?

top

You must be logged in to post comments.