Sequential + separable vs sequentially separable and another variation on selective separability
Angelo Bella; Maddalena Bonanzinga; Mikhail Matveev
Open Mathematics (2013)
- Volume: 11, Issue: 3, page 530-538
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAngelo Bella, Maddalena Bonanzinga, and Mikhail Matveev. "Sequential + separable vs sequentially separable and another variation on selective separability." Open Mathematics 11.3 (2013): 530-538. <http://eudml.org/doc/269246>.
@article{AngeloBella2013,
abstract = {A space X is sequentially separable if there is a countable D ⊂ X such that every point of X is the limit of a sequence of points from D. Neither “sequential + separable” nor “sequentially separable” implies the other. Some examples of this are presented and some conditions under which one of the two implies the other are discussed. A selective version of sequential separability is also considered.},
author = {Angelo Bella, Maddalena Bonanzinga, Mikhail Matveev},
journal = {Open Mathematics},
keywords = {Sequential space; Separable space; Sequentially separable space; Strongly sequentially separable space; Selective separability; sequential space; separable space; sequentially separable space; strongly sequentially separable space; selective separability},
language = {eng},
number = {3},
pages = {530-538},
title = {Sequential + separable vs sequentially separable and another variation on selective separability},
url = {http://eudml.org/doc/269246},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Angelo Bella
AU - Maddalena Bonanzinga
AU - Mikhail Matveev
TI - Sequential + separable vs sequentially separable and another variation on selective separability
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 530
EP - 538
AB - A space X is sequentially separable if there is a countable D ⊂ X such that every point of X is the limit of a sequence of points from D. Neither “sequential + separable” nor “sequentially separable” implies the other. Some examples of this are presented and some conditions under which one of the two implies the other are discussed. A selective version of sequential separability is also considered.
LA - eng
KW - Sequential space; Separable space; Sequentially separable space; Strongly sequentially separable space; Selective separability; sequential space; separable space; sequentially separable space; strongly sequentially separable space; selective separability
UR - http://eudml.org/doc/269246
ER -
References
top- [1] Arhangel’skił A.V., Franklin S.P., Ordinal invariants for topological spaces, Michigan Math. J., 1968, 15, 313–320 http://dx.doi.org/10.1307/mmj/1029000034[Crossref]
- [2] Barman D., Dow A., Selective separability and SS+, Topology Proc., 2011, 37, 181–204
- [3] Bella A., More on sequential properties of 2ω1, Questions Answers Gen. Topology, 2004, 22(1), 1–4
- [4] Bella A., Bonanzinga M., Matveev M., Variations of selective separability, Topology Appl., 2009, 156(7), 1241–1252 http://dx.doi.org/10.1016/j.topol.2008.12.029[Crossref]
- [5] Bella A., Bonanzinga M., Matveev M., Addendum to “Variations of selective separability” [Topology Appl., 156 (7) 2009, 1241–1252], Topology Appl., 2010, 157(15), 2389–2391 http://dx.doi.org/10.1016/j.topol.2010.07.008[Crossref] Zbl1168.54009
- [6] Bella A., Bonanzinga M., Matveev M.V., Tkachuk V.V., Selective separability: general facts and behavior in countable spaces, In: Spring Topology and Dynamics Conference, Topology Proc., 2008, 32(Spring), 15–30 Zbl1165.54008
- [7] Bella A., Matveev M., Spadaro S., Variations of selective separability II: Discrete sets and the influence of convergence and maximality, Topology Appl., 2012, 159(1), 253–271 http://dx.doi.org/10.1016/j.topol.2011.09.005[WoS][Crossref]
- [8] van Douwen E.K., The integers and topology, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, 111–167
- [9] van Douwen E.K., Applications of maximal topologies, Topology Appl., 1993, 51(2), 125–139 http://dx.doi.org/10.1016/0166-8641(93)90145-4[WoS][Crossref]
- [10] Dow A., Sequential order under MA, Topology Appl., 2005, 146/147, 501–510 http://dx.doi.org/10.1016/j.topol.2003.09.012[Crossref]
- [11] Dow A., Vaughan J.E., Ordinal remainders of classical -spaces, Fund. Math., 2012, 217(1), 83–93 http://dx.doi.org/10.4064/fm217-1-7[Crossref] Zbl1251.54027
- [12] Engelking R., General Topology, Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989
- [13] Gartside P., Lo J.T.H., Marsh A., Sequential density, Topology Appl., 2003, 130(1), 75–86 http://dx.doi.org/10.1016/S0166-8641(02)00199-2[Crossref] Zbl1031.54014
- [14] Gruenhage G., Sakai M., Selective separability and its variations, Topology Appl., 2011, 158(12), 1352–1359 http://dx.doi.org/10.1016/j.topol.2011.05.009[Crossref] Zbl1228.54028
- [15] Hrušák M., Steprāns J., Cardinal invariants related to sequential separability, In: Axiomatic Set Theory, Kyoto, November 15–17, 2000, Sūrikaisekikenkyūsho Kōkyūroku, 1202, Research Institute for Mathematical Sciences, Kyoto, 2001, 66–74 Zbl0985.03520
- [16] Matveev M., Cardinal p and a theorem of Pelczynski, preprint available at http://arxiv.org/abs/math/0006197
- [17] Miller A.W., Fremlin D.H., On some properties of Hurewicz, Menger, and Rothberger, Fund. Math., 1988, 129(1), 17–33 Zbl0665.54026
- [18] Scheepers M., Combinatorics of open covers I: Ramsey theory, Topology Appl., 1996, 69(1), 31–62 http://dx.doi.org/10.1016/0166-8641(95)00067-4[Crossref]
- [19] Scheepers M., Combinatorics of open covers VI: Selectors for sequences of dense sets, Quaest. Math., 1999, 22(1), 109–130 http://dx.doi.org/10.1080/16073606.1999.9632063[Crossref]
- [20] Tironi G., Isler R., On some problems of local approximability in compact spaces, In: General Topology and its Relations to Modern Analysis and Algebra, III, Prague, August 30–September 3, 1971, Academia, Prague, 1972, 443–446
- [21] Vaughan J.E., Small uncountable cardinals and topology, In: Open Problems in Topology, North-Holland, Amsterdam, 1990, 195–218
- [22] Velichko N.V., On sequential separability, Math. Notes, 2005, 78(5–6), 610–614 http://dx.doi.org/10.1007/s11006-005-0164-2[Crossref] Zbl1109.54015
- [23] Wilansky A., How separable is a space?, Amer. Math. Monthly, 1972, 79(7), 764–765 http://dx.doi.org/10.2307/2316270[Crossref]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.