On the dimension of the space of ℝ-places of certain rational function fields

Taras Banakh; Yaroslav Kholyavka; Oles Potyatynyk; Michał Machura; Katarzyna Kuhlmann

Open Mathematics (2014)

  • Volume: 12, Issue: 8, page 1239-1248
  • ISSN: 2391-5455

Abstract

top
We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.

How to cite

top

Taras Banakh, et al. "On the dimension of the space of ℝ-places of certain rational function fields." Open Mathematics 12.8 (2014): 1239-1248. <http://eudml.org/doc/269257>.

@article{TarasBanakh2014,
abstract = {We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.},
author = {Taras Banakh, Yaroslav Kholyavka, Oles Potyatynyk, Michał Machura, Katarzyna Kuhlmann},
journal = {Open Mathematics},
keywords = {Space of R-places; Graphoid; Dimension; Cohomological dimension; Extension dimension; space of -places; graphoid; dimension; cohomological dimension; extension dimension},
language = {eng},
number = {8},
pages = {1239-1248},
title = {On the dimension of the space of ℝ-places of certain rational function fields},
url = {http://eudml.org/doc/269257},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Taras Banakh
AU - Yaroslav Kholyavka
AU - Oles Potyatynyk
AU - Michał Machura
AU - Katarzyna Kuhlmann
TI - On the dimension of the space of ℝ-places of certain rational function fields
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1239
EP - 1248
AB - We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.
LA - eng
KW - Space of R-places; Graphoid; Dimension; Cohomological dimension; Extension dimension; space of -places; graphoid; dimension; cohomological dimension; extension dimension
UR - http://eudml.org/doc/269257
ER -

References

top
  1. [1] Banakh T., Potyatynyk O., Dimension of graphoids of rational vector-functions, Topology Appl., 2013, 160(1), 24–44 http://dx.doi.org/10.1016/j.topol.2012.09.012 Zbl1275.54022
  2. [2] Becker E., Gondard D., Notes on the space of real places of a formally real field, In: Real Analytic and Algebraic Geometry, Trento, September 21–25, 1992, de Gruyter, Berlin, 1995, 21–46 Zbl0869.12002
  3. [3] Bochnak J., Coste M., Roy M.-F., Real Algebraic Geometry, Ergeb. Math. Grenzgeb., 36, Springer, Berlin, 1998 http://dx.doi.org/10.1007/978-3-662-03718-8 
  4. [4] Brown R., Real places and ordered fields, Rocky Mountain J. Math., 1971, 1(4), 633–636 http://dx.doi.org/10.1216/RMJ-1971-1-4-633 
  5. [5] Coste M., Real algebraic sets, available at http://perso.univ-rennes1.fr/michel.coste/polyens/RASroot.pdf Zbl1144.14305
  6. [6] Craven T.C., The Boolean space of orderings of a field, Trans. Amer. Math. Soc., 1975, 209, 225–235 http://dx.doi.org/10.1090/S0002-9947-1975-0379448-X Zbl0315.12106
  7. [7] Dranishnikov A.N., Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions, 2001, 6(3), 7–73, available at http://at.yorku.ca/t/a/i/c/43.htm 
  8. [8] Dranishnikov A., Dydak J., Extension dimension and extension types, Proc. Steklov Inst. Math., 1996, 1(212), 55–88 Zbl0874.54033
  9. [9] Dubois D.W., Infinite Primes and Ordered Fields, Dissertationes Math. Rozprawy Mat., 69, Polish Academy Sciences, Warsaw, 1970 Zbl0266.12103
  10. [10] Engelking R., Theory of Dimensions Finite and Infinite, Sigma Ser. Pure Math., 10, Heldermann, Lemgo, 1995 Zbl0872.54002
  11. [11] Kuhlmann K., The structure of spaces of R-places of rational function fields over real closed fields, preprint available at http://math.usask.ca/fvk/recpap.htm Zbl1262.12002
  12. [12] Lam T.Y., Orderings, Valuations and Quadratic Forms, CBMS Regional Conf. Ser. in Math., 52, American Mathematical Society, Providence, 1983 
  13. [13] Lang S., The theory of real places, Ann. of Math., 1953, 57(2), 378–391 http://dx.doi.org/10.2307/1969865 Zbl0052.03301
  14. [14] Lang S., Algebra, Grad. Text in Math., 221, Springer, New York, 2002 http://dx.doi.org/10.1007/978-1-4613-0041-0 
  15. [15] Machura M., Marshall M., Osiak K., Metrizability of the space of R-places of a real function field, Math. Z., 2010, 266(1), 237–242 http://dx.doi.org/10.1007/s00209-009-0566-z Zbl1201.12001
  16. [16] Marshall M., Positive Polynomials and Sums of Squares, Math. Surveys Monogr., 146, American Mathematical Society, Providence, 2008 
  17. [17] Schleiermacher A., On Archimedean fields, J. Geom., 2009, 92(1–2), 143–173 http://dx.doi.org/10.1007/s00022-008-2098-9 Zbl1201.12004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.