Page 1 Next

Displaying 1 – 20 of 64

Showing per page

A really elementary proof of real Lüroth's theorem.

T. Recio, J. R. Sendra (1997)

Revista Matemática de la Universidad Complutense de Madrid

Classical Lüroth theorem states that every subfield K of K(t), where t is a transcendental element over K, such that K strictly contains K, must be K = K(h(t)), for some non constant element h(t) in K(t). Therefore, K is K-isomorphic to K(t). This result can be proved with elementary algebraic techniques, and therefore it is usually included in basic courses on field theory or algebraic curves. In this paper we study the validity of this result under weaker assumptions: namely, if K is a subfield...

A representation theorem for a class of rigid analytic functions

Victor Alexandru, Nicolae Popescu, Alexandru Zaharescu (2003)

Journal de théorie des nombres de Bordeaux

Let p be a prime number, p the field of p -adic numbers and p the completion of the algebraic closure of p . In this paper we obtain a representation theorem for rigid analytic functions on 𝐏 1 ( p ) C ( t , ϵ ) which are equivariant with respect to the Galois group G = G a l c o n t ( p / p ) , where t is a lipschitzian element of p and C ( t , ϵ ) denotes the ϵ -neighborhood of the G -orbit of t .

Extending automorphisms to the rational fractions field.

Fernando Fernández Rodríguez, Agustín Llerena Achutegui (1991)

Extracta Mathematicae

We say that a field K has the Extension Property if every automorphism of K(X) extends to an automorphism of K. J.M. Gamboa and T. Recio [2] have introduced this concept, naive in appearance, because of its crucial role in the study of homogeneity conditions in spaces of orderings of functions fields. Gamboa [1] has studied several classes of fields with this property: Algebraic extensions of the field Q of rational numbers; euclidean, algebraically closed and pythagorean fields; fields with an...

Currently displaying 1 – 20 of 64

Page 1 Next