A characterization of p-bases of rings of constants
Open Mathematics (2013)
- Volume: 11, Issue: 5, page 900-909
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPiotr Jędrzejewicz. "A characterization of p-bases of rings of constants." Open Mathematics 11.5 (2013): 900-909. <http://eudml.org/doc/269270>.
@article{PiotrJędrzejewicz2013,
abstract = {We obtain two equivalent conditions for m polynomials in n variables to form a p-basis of a ring of constants of some polynomial K-derivation, where K is a unique factorization domain of characteristic p > 0. One of these conditions involves Jacobians while the other some properties of factors. In the case m = n this extends the known theorem of Nousiainen, and we obtain a new formulation of the Jacobian conjecture in positive characteristic.},
author = {Piotr Jędrzejewicz},
journal = {Open Mathematics},
keywords = {Derivation; Ring of constants; p-basis; Jacobian conjecture; derivation; ring of constants; -basis},
language = {eng},
number = {5},
pages = {900-909},
title = {A characterization of p-bases of rings of constants},
url = {http://eudml.org/doc/269270},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Piotr Jędrzejewicz
TI - A characterization of p-bases of rings of constants
JO - Open Mathematics
PY - 2013
VL - 11
IS - 5
SP - 900
EP - 909
AB - We obtain two equivalent conditions for m polynomials in n variables to form a p-basis of a ring of constants of some polynomial K-derivation, where K is a unique factorization domain of characteristic p > 0. One of these conditions involves Jacobians while the other some properties of factors. In the case m = n this extends the known theorem of Nousiainen, and we obtain a new formulation of the Jacobian conjecture in positive characteristic.
LA - eng
KW - Derivation; Ring of constants; p-basis; Jacobian conjecture; derivation; ring of constants; -basis
UR - http://eudml.org/doc/269270
ER -
References
top- [1] Adjamagbo K., On separable algebras over a U.F.D. and the Jacobian conjecture in any characteristic, In: Automorphisms of Affine Spaces, Curaçao, July 4-8, 1994, Kluwer, Dordrecht, 1995, 89–103 Zbl0832.13017
- [2] van den Essen A., Polynomial Automorphisms and the Jacobian Conjecture, Progr. Math., 190, Birkhäuser, Basel, 2000 Zbl0962.14037
- [3] van den Essen A., Nowicki A., Tyc A., Generalizations of a lemma of Freudenburg, J. Pure Appl. Algebra, 2003, 177(1), 43–47 http://dx.doi.org/10.1016/S0022-4049(02)00175-5 Zbl1040.13005
- [4] Freudenburg G., A note on the kernel of a locally nilpotent derivation, Proc. Amer. Math. Soc., 1996, 124(1), 27–29 http://dx.doi.org/10.1090/S0002-9939-96-03003-1 Zbl0857.13005
- [5] Jędrzejewicz P., Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra, 2003, 31(11), 5501–5511 http://dx.doi.org/10.1081/AGB-120023970 Zbl1024.13008
- [6] Jędrzejewicz P., Eigenvector p-bases of rings of constants of derivations, Comm. Algebra, 2008, 36(4), 1500–1508 http://dx.doi.org/10.1080/00927870701869014 Zbl1200.13040
- [7] Jędrzejewicz P., One-element p-bases of rings of constants of derivations, Osaka J. Math., 2009, 46(1), 223–234 Zbl1159.13014
- [8] Jędrzejewicz P., A characterization of one-element p-bases of rings of constants, Bull. Pol. Acad. Sci. Math., 2011, 59(1), 19–26 http://dx.doi.org/10.4064/ba59-1-3 Zbl1216.13017
- [9] Jędrzejewicz P., A note on rings of constants of derivations in integral domains, Colloq. Math., 2011, 122(2), 241–245 http://dx.doi.org/10.4064/cm122-2-9
- [10] Jędrzejewicz P., Jacobian conditions for p-bases, Comm. Algebra, 2012, 40(8), 2841–2852 http://dx.doi.org/10.1080/00927872.2011.587213 Zbl1254.13028
- [11] Jędrzejewicz P., A characterization of Keller maps, J. Pure Appl. Algebra, 2013, 217(1), 165–171 http://dx.doi.org/10.1016/j.jpaa.2012.06.015 Zbl1267.14077
- [12] Matsumura H., Commutative Algebra, 2nd ed., Math. Lecture Note Ser., 56, Benjamin/Cummings, Reading, 1980
- [13] Niitsuma H., Jacobian matrix and p-basis, TRU Math., 1988, 24(1), 19–34 Zbl0716.13005
- [14] Niitsuma H., Jacobian matrix and p-basis, In: Topics in Algebra, Banach Center Publ., 26(2), PWN, Warszawa, 1990, 185–188
- [15] Nousiainen P.S., On the Jacobian Problem, PhD thesis, Pennsylvania State University, 1982
- [16] Nowicki A., Polynomial Derivations and their Rings of Constants, Habilitation thesis, Nicolaus Copernicus University, Torun, 1994, available at http://www-users.mat.umk.pl/_anow/ps-dvi/pol-der.pdf Zbl1236.13023
- [17] Nowicki A., Nagata M., Rings of constants for k-derivations in k[x 1, … x n], J. Math. Kyoto Univ., 1988, 28(1), 111–118 Zbl0665.12024
- [18] Ono T., A note on p-bases of rings, Proc. Amer. Math. Soc., 2000, 128(2), 353–360 http://dx.doi.org/10.1090/S0002-9939-99-05029-7 Zbl0934.13001
- [19] Ono T., A note on p-bases of a regular affine domain extension, Proc. Amer. Math. Soc., 2008, 136(9), 3079–3087 http://dx.doi.org/10.1090/S0002-9939-08-09338-6 Zbl1153.13009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.