Elliptic K3 surfaces as dynamical models and their Hamiltonian monodromy
Open Mathematics (2012)
- Volume: 10, Issue: 5, page 1619-1626
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Barth W.P., Hulek K., Peters C.A.M., Van de Ven A., Compact Complex Surfaces, 2nd ed., Springer, Berlin-Heidelberg-New York, 2004 Zbl1036.14016
- [2] Bates L., Cushman R., Complete integrability beyond Liouville-Arnol’d, Rep. Math. Phys., 2005, 56(1), 77–91 http://dx.doi.org/10.1016/S0034-4877(05)80042-4 Zbl1134.37353
- [3] Bolsinov A.V., Dullin H.R., Veselov A.P., Spectra of sol-manifolds: arithmetic and quantum monodromy, Commun. Math. Phys., 2006, 264, 583–611 http://dx.doi.org/10.1007/s00220-006-1543-6 Zbl1109.58027
- [4] Cushman R.H., Bates L.M., Global Aspects of Classical Integrable Systems, Birkhäuser, Basel-Boston-Berlin, 1997 http://dx.doi.org/10.1007/978-3-0348-8891-2 Zbl0882.58023
- [5] Duistermaat J.J., On global action-angle coordinates, Comm. Pure Appl. Math., 1980, 33(6), 687–706 http://dx.doi.org/10.1002/cpa.3160330602 Zbl0439.58014
- [6] Flaschka H., A remark on integrable Hamiltonian systems, Phy. Lett. A, 1988, 131(9), 505–508 http://dx.doi.org/10.1016/0375-9601(88)90678-0
- [7] Hurwitz A., Vorlesungen über Allgemeine Funktionentheorie und Elliptische Funktionen, 5th ed., Berlin-Heidelberg-New York, Springer, 2000 http://dx.doi.org/10.1007/978-3-642-56952-4
- [8] Kas A., Weierstrass normal forms and invariants of elliptic surfaces, Trans. Amer. Math. Soc., 1977, 225, 259–266 http://dx.doi.org/10.1090/S0002-9947-1977-0422285-X Zbl0402.14014
- [9] Kodaira K., On compact analytic surfaces: I, II, III, Ann. of Math., 1960, 71, 111–152; 1963, 77, 563-626; 1963, 78, 1–40 http://dx.doi.org/10.2307/1969881 Zbl0098.13004
- [10] Leung N.C., Symington M., Almost toric symplectic four-manifolds, J. Symplectic Geom., 2010, 8(2), 143–187 Zbl1197.53103
- [11] Markushevich D.G., Integrable symplectic structures on compact complex manifolds, Math. USSR-Sb., 1988, 59(2), 459–469 http://dx.doi.org/10.1070/SM1988v059n02ABEH003146 Zbl0637.58004
- [12] Pjateckiĭ-Šapiro I.I., Šafarevič I.R., A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izvestija, 1971, 5(3), 547–588 http://dx.doi.org/10.1070/IM1971v005n03ABEH001075
- [13] Zhilinskií B., Quantum monodromy and pattern formation, 2010, J. Phys. A, 43, #434033 http://dx.doi.org/10.1088/1751-8113/43/43/434033 Zbl1202.81100