Fixed points for cyclic orbital generalized contractions on complete metric spaces
Erdal Karapınar; Salvador Romaguera; Kenan Taş
Open Mathematics (2013)
- Volume: 11, Issue: 3, page 552-560
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topErdal Karapınar, Salvador Romaguera, and Kenan Taş. "Fixed points for cyclic orbital generalized contractions on complete metric spaces." Open Mathematics 11.3 (2013): 552-560. <http://eudml.org/doc/269285>.
@article{ErdalKarapınar2013,
abstract = {We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal.},
author = {Erdal Karapınar, Salvador Romaguera, Kenan Taş},
journal = {Open Mathematics},
keywords = {Fixed point; Cyclic generalized contraction; Complete metric space; fixed point; cyclic generalized contraction; complete metric space},
language = {eng},
number = {3},
pages = {552-560},
title = {Fixed points for cyclic orbital generalized contractions on complete metric spaces},
url = {http://eudml.org/doc/269285},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Erdal Karapınar
AU - Salvador Romaguera
AU - Kenan Taş
TI - Fixed points for cyclic orbital generalized contractions on complete metric spaces
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 552
EP - 560
AB - We prove a fixed point theorem for cyclic orbital generalized contractions on complete metric spaces from which we deduce, among other results, generalized cyclic versions of the celebrated Boyd and Wong fixed point theorem, and Matkowski fixed point theorem. This is done by adapting to the cyclic framework a condition of Meir-Keeler type discussed in [Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303]. Our results generalize some theorems of Kirk, Srinavasan and Veeramani, and of Karpagam and Agrawal.
LA - eng
KW - Fixed point; Cyclic generalized contraction; Complete metric space; fixed point; cyclic generalized contraction; complete metric space
UR - http://eudml.org/doc/269285
ER -
References
top- [1] Al-Thagafi M.A., Shahzad N., Convergence and existence results for best proximity points, Nonlinear Anal., 2009, 70(10), 3665–3671 http://dx.doi.org/10.1016/j.na.2008.07.022[WoS][Crossref] Zbl1197.47067
- [2] Anuradha J., Veeramani P., Proximal pointwise contraction, Topology Appl., 2009, 156(18), 2942–2948 http://dx.doi.org/10.1016/j.topol.2009.01.017[Crossref] Zbl1180.47035
- [3] Boyd D.W., Wong J.S.W., On nonlinear contractions, Proc. Amer. Math. Soc., 1969, 20, 458–464 http://dx.doi.org/10.1090/S0002-9939-1969-0239559-9[Crossref] Zbl0175.44903
- [4] Derafshpour M., Rezapour Sh., Shahzad N., Best proximity point of cyclic φ-contractions in ordered metric spaces, Topol. Methods Nonlinear Anal., 2011, 37(1), 193–202 Zbl1227.54046
- [5] Di Bari C., Suzuki T., Vetro C., Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal., 2008, 69(11), 3790–3794 http://dx.doi.org/10.1016/j.na.2007.10.014[WoS][Crossref] Zbl1169.54021
- [6] Eldred A.A., Veeramani P., Existence and convergence of best proximity points, J. Math. Anal. Appl., 2006, 323(2), 1001–1006 http://dx.doi.org/10.1016/j.jmaa.2005.10.081[Crossref] Zbl1105.54021
- [7] Jachymski J., Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 1995, 194(1), 293–303 http://dx.doi.org/10.1006/jmaa.1995.1299[Crossref] Zbl0834.54025
- [8] Jachymski J.R., Equivalence of some contractivity properties over metrical structures, Proc. Amer. Math. Soc., 1997, 125(8), 2327–2335 http://dx.doi.org/10.1090/S0002-9939-97-03853-7[Crossref] Zbl0887.47039
- [9] Karapınar E., Fixed point theory for cyclic weak ϕ-contraction, Appl. Math. Lett., 2011, 24(6), 822–825 http://dx.doi.org/10.1016/j.aml.2010.12.016[WoS][Crossref]
- [10] Karpagam S., Agrawal S., Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., 2011, 74(4), 1040–1046 http://dx.doi.org/10.1016/j.na.2010.07.026[Crossref]
- [11] Kirk W.A., Srinavasan P.S., Veeramani P., Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory, 2003, 4(1), 79–89 Zbl1052.54032
- [12] Kosuru G.S.R., Veeramani P., Cyclic contractions and best proximity pair theorems, preprint available at http://arxiv.org/abs/1012.1434 Zbl1237.54052
- [13] Matkowski J., Integrable Solutions of Functional Equations, Dissertationes Math. (Rozprawy Mat.), 127, Polish Academy of Sciences, Warsaw, 1975
- [14] Meir A., Keeler E., A theorem on contraction mappings, J. Math. Anal. Appl., 1969, 28, 326–329 http://dx.doi.org/10.1016/0022-247X(69)90031-6[Crossref]
- [15] Păcurar M., Rus I.A., Fixed point theory for cyclic φ-contractions, Nonlinear Anal., 2010, 72(3–4), 1181–1187 http://dx.doi.org/10.1016/j.na.2009.08.002[Crossref]
- [16] Petruşel G., Cyclic representations and periodic points, Studia Univ. Babeş-Bolyai Math., 2005, 50(3), 107–112
- [17] Rus I.A., Cyclic representations and fixed points, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 2005, 3, 171–178
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.