Wavelets generated by the Rudin-Shapiro polynomials

Abdolaziz Abdollahi; Jahangir Cheshmavar; Mohsen Taghavi

Open Mathematics (2011)

  • Volume: 9, Issue: 2, page 441-448
  • ISSN: 2391-5455

Abstract

top
In this paper, we consider the well-known Rudin-Shapiro polynomials as a class of constant multiples of low-pass filters to construct a sequence of compactly supported wavelets.

How to cite

top

Abdolaziz Abdollahi, Jahangir Cheshmavar, and Mohsen Taghavi. "Wavelets generated by the Rudin-Shapiro polynomials." Open Mathematics 9.2 (2011): 441-448. <http://eudml.org/doc/269291>.

@article{AbdolazizAbdollahi2011,
abstract = {In this paper, we consider the well-known Rudin-Shapiro polynomials as a class of constant multiples of low-pass filters to construct a sequence of compactly supported wavelets.},
author = {Abdolaziz Abdollahi, Jahangir Cheshmavar, Mohsen Taghavi},
journal = {Open Mathematics},
keywords = {Rudin-Shapiro polynomials; Low-pass filter; Wavelet; Multiresolution analysis (MRA); low-pass filter; wavelet; multiresolution analysis (MRA)},
language = {eng},
number = {2},
pages = {441-448},
title = {Wavelets generated by the Rudin-Shapiro polynomials},
url = {http://eudml.org/doc/269291},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Abdolaziz Abdollahi
AU - Jahangir Cheshmavar
AU - Mohsen Taghavi
TI - Wavelets generated by the Rudin-Shapiro polynomials
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 441
EP - 448
AB - In this paper, we consider the well-known Rudin-Shapiro polynomials as a class of constant multiples of low-pass filters to construct a sequence of compactly supported wavelets.
LA - eng
KW - Rudin-Shapiro polynomials; Low-pass filter; Wavelet; Multiresolution analysis (MRA); low-pass filter; wavelet; multiresolution analysis (MRA)
UR - http://eudml.org/doc/269291
ER -

References

top
  1. [1] Brillhart J., Carlotz L., Note on the Shapiro polynomial, Proc. Amer. Math. Soc., 1970, 25, 114–118 http://dx.doi.org/10.1090/S0002-9939-1970-0260955-6 
  2. [2] Billhart J., Lomont J.S., Morton P., Cyclotomic properties of the Rudin-Shapiro polynomials, J. Reine Angew. Math., 1976, 288, 37–65 Zbl0335.12003
  3. [3] Butzer P.L., Fischer A., Rückforth K., Scaling functions and wavelets with vanishing moments, Comput. Math. Appl., 1994, 27(3), 33–39 http://dx.doi.org/10.1016/0898-1221(94)90044-2 Zbl0852.42022
  4. [4] Byrnes J.S., Quadrature mirror filter, low crest factor arrays, functions achieving optimal uncertainty principle bounds, and complete orthonormal sequences - a unified approach, Appl. Comput. Harmon. Anal., 1994, 1(3), 261–266 http://dx.doi.org/10.1006/acha.1994.1013 Zbl0802.42023
  5. [5] Byrnes J.S., Moran W., Saffari B., Smooth PONS, J. Fourier Anal. Appl., 2000, 6(6), 663–674 http://dx.doi.org/10.1007/BF02510701 
  6. [6] Chui C.K., An Introduction to Wavelets, Wavelet Anal. Appl., 1, Academic Press, Boston, 1992 Zbl0925.42016
  7. [7] Cohen A., Ondelettes, analysis multirésolutions et filtres miroirs en quadrature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1990, 7(5), 439–459 Zbl0736.42021
  8. [8] la Cour-Harbo A., On the Rudin-Shapiro transform, Appl. Comput. Harmon. Anal., 2008, 24(3), 310–328 http://dx.doi.org/10.1016/j.acha.2007.05.003 Zbl1143.42029
  9. [9] Daubechies I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, 41(7), 909–996 http://dx.doi.org/10.1002/cpa.3160410705 Zbl0644.42026
  10. [10] Daubechies I., Ten Lectures on Wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, 1992 
  11. [11] Gripenberg G., Computing the joint spectral radius, Linear Algebra Appl., 1996, 234, 43–60 http://dx.doi.org/10.1016/0024-3795(94)00082-4 Zbl0863.65017
  12. [12] Haar A., Zur Theorie der orthogonalen Funktionensysteme, Math. Ann., 1910, 69(3), 331–371 http://dx.doi.org/10.1007/BF01456326 Zbl41.0469.03
  13. [13] Hernández E., Weiss G., A First Course on Wavelets, Stud. Adv. Math., CRC Press, Boca Raton, 1996 
  14. [14] Hong D., Wang J., Gardner R., Real Analysis with an Introduction to Wavelets and Applications, Elsevier Academic Press, Burlington-San Diego-London, 2005 
  15. [15] Lawton W.M., Necessary and sufficient conditions for constructing orthonormal wavelet bases, J. Math. Phys., 1991, 32(1), 57–61 http://dx.doi.org/10.1063/1.529093 Zbl0757.46012
  16. [16] Lebedeva E.A., Protasov V.Yu., Meyer wavelets with least uncertainty constant, Math. Notes, 2008, 84(5–6), 680–687 http://dx.doi.org/10.1134/S0001434608110096 Zbl1219.42029
  17. [17] Li D.F., Peng S.L., Chen H.L., Local properties of periodic cardinal interpolatory wavelets, Acta Math. Sinica (Chinese Ser.), 2001, 44(5), 947–960 Zbl1021.42016
  18. [18] Mallat S.G., Multiresolution approximations and wavelet orthonormal bases of L 2(ℝ), Trans. Amer. Math. Soc., 1989, 315(1), 69–87 Zbl0686.42018
  19. [19] Meyer Y., Wavelets and Operators, Cambridge Stud. Adv. Math., 37, Cambridge University Press, Cambridge, 1992 
  20. [20] Novikov I.Ya., Stechkin S.B., Basic wavelet theory, Russian Math. Surveys, 1998, 53(6), 1159–1231 http://dx.doi.org/10.1070/RM1998v053n06ABEH000089 Zbl0955.42019
  21. [21] Rudin W., Some theorems on Fourier coefficients, Proc. Amer. Math. Soc., 1959, 10, 855–859 http://dx.doi.org/10.1090/S0002-9939-1959-0116184-5 Zbl0091.05706
  22. [22] Shapiro H.S., Extremal Problems for Polynomials and Power Series, M.I.T. Master’s Thesis, Cambridge, 1951, available at http://hdl.handle.net/1721.1/12198 
  23. [23] Villemoes L.F., Wavelet analysis of refinement equations, SIAM J. Math. Anal., 1994, 25(5), 1433–1460 http://dx.doi.org/10.1137/S0036141092228179 Zbl0809.42016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.