The 3-state Potts model and Rogers-Ramanujan series
Open Mathematics (2013)
- Volume: 11, Issue: 1, page 1-16
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAlex Feingold, and Antun Milas. "The 3-state Potts model and Rogers-Ramanujan series." Open Mathematics 11.1 (2013): 1-16. <http://eudml.org/doc/269296>.
@article{AlexFeingold2013,
abstract = {We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A 2(2) -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra.},
author = {Alex Feingold, Antun Milas},
journal = {Open Mathematics},
keywords = {Vertex algebras; Affine Kac-Moody Lie algebras; W-algebras; vertex algebras; affine Kac-Moody Lie algebras},
language = {eng},
number = {1},
pages = {1-16},
title = {The 3-state Potts model and Rogers-Ramanujan series},
url = {http://eudml.org/doc/269296},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Alex Feingold
AU - Antun Milas
TI - The 3-state Potts model and Rogers-Ramanujan series
JO - Open Mathematics
PY - 2013
VL - 11
IS - 1
SP - 1
EP - 16
AB - We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A 2(2) -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra.
LA - eng
KW - Vertex algebras; Affine Kac-Moody Lie algebras; W-algebras; vertex algebras; affine Kac-Moody Lie algebras
UR - http://eudml.org/doc/269296
ER -
References
top- [1] Adamovic D., Perše O., On coset vertex algebras with central charge 1, Math. Commun., 2010, 15(1), 143–157 Zbl1230.17018
- [2] Arakawa T., Representation theory of W-algebras, Invent. Math., 2007, 169(2), 219–320 http://dx.doi.org/10.1007/s00222-007-0046-1 Zbl1172.17019
- [3] Bais F.A., Bouwknegt P., Surridge M., Schoutens K., Coset construction for extended Virasoro algebras, Nuclear Phys. B, 1988, 304(2), 371–391 http://dx.doi.org/10.1016/0550-3213(88)90632-3 Zbl0675.17010
- [4] Borcea J., Dualities, Affine Vertex Operator Algebras, and Geometry of Complex Polynomials, PhD thesis, Lund University, 1998
- [5] Bouwknegt P., Schoutens K., W-symmetry in conformal field theory, Phys. Rep., 1993, 223(4), 183–276 http://dx.doi.org/10.1016/0370-1573(93)90111-P
- [6] Bytsko A., Fring A., Factorized combinations of Virasoro characters, Comm. Math. Phys., 2000, 209(1), 179–205 http://dx.doi.org/10.1007/s002200050019 Zbl0978.81041
- [7] Capparelli S., A combinatorial proof of a partition identity related to the level 3 representations of a twisted affine Lie algebra, Comm. Algebra, 1995, 23(8), 2959–2969 http://dx.doi.org/10.1080/00927879508825379 Zbl0830.17012
- [8] Dong C., Li H., Mason G., Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices, 1998, 8, 389–397 http://dx.doi.org/10.1155/S1073792898000269 Zbl0916.17023
- [9] Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys., 2000, 214(1), 1–56 http://dx.doi.org/10.1007/s002200000242 Zbl1061.17025
- [10] Dong C., Wang Q., On C 2-cofiniteness of parafermion vertex operator algebras, J. Algebra, 2011, 328, 420–431 http://dx.doi.org/10.1016/j.jalgebra.2010.10.015 Zbl1261.17027
- [11] Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206 http://dx.doi.org/10.1007/978-1-4613-9550-8_9
- [12] Frenkel E., Kac V., Wakimoto M., Characters and fusion rules for W-algebras via quantized Drinfel’d-Sokolov reduction, Comm. Math. Phys., 1992, 147(2), 295–328 http://dx.doi.org/10.1007/BF02096589 Zbl0768.17008
- [13] Frenkel I.B., Huang Y.-Z., Lepowsky J., On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 104(494), American Mathematical Society, Providence, 1993
- [14] Iohara K., Koga Y., Representation Theory of the Virasoro Algebra, Springer Monogr. Math., Springer, London, 2011 http://dx.doi.org/10.1007/978-0-85729-160-8 Zbl1222.17001
- [15] Kac V.G., Wakimoto M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math., 1988, 70(2), 156–236 http://dx.doi.org/10.1016/0001-8708(88)90055-2 Zbl0661.17016
- [16] Kitazume M., Miyamoto M., Yamada H., Ternary codes and vertex operator algebras, J. Algebra, 2000, 223(2), 379–395 http://dx.doi.org/10.1006/jabr.1999.8058 Zbl0977.17026
- [17] Li H.-S., Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and Related Topics, South Hadley, June 18–23, 1994, Contemp. Math., 193, American Mathematical Society, Providence, 1996, 203–236 http://dx.doi.org/10.1090/conm/193/02373
- [18] Mauriello C., Branching rule decomposition of irreducible level-1 E 6(1)-modules with respect to the affine subalgebra F 4(1), PhD thesis, State University of New York at Binghamton, 2012 (in preparation)
- [19] Milas A., Modular forms and almost linear dependence of graded dimensions, In: Lie Algebras, Vertex Operator Algebras and their Applications, Raleigh, May 17–21, 2005, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 411–424 http://dx.doi.org/10.1090/conm/442/08539
- [20] Miyamoto M., 3-state Potts model and automorphisms of vertex operator algebras of order 3, J. Algebra, 2001, 239(1), 56–76 http://dx.doi.org/10.1006/jabr.2000.8680 Zbl1022.17020
- [21] Mukhin E., Factorization of alternating sums of Virasoro characters, J. Combin. Theory Ser. A, 2007, 114(7), 1165–1181 http://dx.doi.org/10.1016/j.jcta.2006.12.002 Zbl1155.17010
- [22] Wang W., Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices, 1993, 7, 197–211 http://dx.doi.org/10.1155/S1073792893000212 Zbl0791.17029
- [23] Xie C.F., Structure of the level two standard modules for the affine Lie algebra A 2(2), Comm. Algebra, 1990, 18(8), 2397–2401 http://dx.doi.org/10.1080/00927879008824029 Zbl0708.17025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.