The 3-state Potts model and Rogers-Ramanujan series

Alex Feingold; Antun Milas

Open Mathematics (2013)

  • Volume: 11, Issue: 1, page 1-16
  • ISSN: 2391-5455

Abstract

top
We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A 2(2) -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra.

How to cite

top

Alex Feingold, and Antun Milas. "The 3-state Potts model and Rogers-Ramanujan series." Open Mathematics 11.1 (2013): 1-16. <http://eudml.org/doc/269296>.

@article{AlexFeingold2013,
abstract = {We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A 2(2) -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra.},
author = {Alex Feingold, Antun Milas},
journal = {Open Mathematics},
keywords = {Vertex algebras; Affine Kac-Moody Lie algebras; W-algebras; vertex algebras; affine Kac-Moody Lie algebras},
language = {eng},
number = {1},
pages = {1-16},
title = {The 3-state Potts model and Rogers-Ramanujan series},
url = {http://eudml.org/doc/269296},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Alex Feingold
AU - Antun Milas
TI - The 3-state Potts model and Rogers-Ramanujan series
JO - Open Mathematics
PY - 2013
VL - 11
IS - 1
SP - 1
EP - 16
AB - We explain the appearance of Rogers-Ramanujan series inside the tensor product of two basic A 2(2) -modules, previously discovered by the first author in [Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206]. The key new ingredients are (5,6)Virasoro minimal models and twisted modules for the Zamolodchikov W 3-algebra.
LA - eng
KW - Vertex algebras; Affine Kac-Moody Lie algebras; W-algebras; vertex algebras; affine Kac-Moody Lie algebras
UR - http://eudml.org/doc/269296
ER -

References

top
  1. [1] Adamovic D., Perše O., On coset vertex algebras with central charge 1, Math. Commun., 2010, 15(1), 143–157 Zbl1230.17018
  2. [2] Arakawa T., Representation theory of W-algebras, Invent. Math., 2007, 169(2), 219–320 http://dx.doi.org/10.1007/s00222-007-0046-1 Zbl1172.17019
  3. [3] Bais F.A., Bouwknegt P., Surridge M., Schoutens K., Coset construction for extended Virasoro algebras, Nuclear Phys. B, 1988, 304(2), 371–391 http://dx.doi.org/10.1016/0550-3213(88)90632-3 Zbl0675.17010
  4. [4] Borcea J., Dualities, Affine Vertex Operator Algebras, and Geometry of Complex Polynomials, PhD thesis, Lund University, 1998 
  5. [5] Bouwknegt P., Schoutens K., W-symmetry in conformal field theory, Phys. Rep., 1993, 223(4), 183–276 http://dx.doi.org/10.1016/0370-1573(93)90111-P 
  6. [6] Bytsko A., Fring A., Factorized combinations of Virasoro characters, Comm. Math. Phys., 2000, 209(1), 179–205 http://dx.doi.org/10.1007/s002200050019 Zbl0978.81041
  7. [7] Capparelli S., A combinatorial proof of a partition identity related to the level 3 representations of a twisted affine Lie algebra, Comm. Algebra, 1995, 23(8), 2959–2969 http://dx.doi.org/10.1080/00927879508825379 Zbl0830.17012
  8. [8] Dong C., Li H., Mason G., Twisted representations of vertex operator algebras and associative algebras, Internat. Math. Res. Notices, 1998, 8, 389–397 http://dx.doi.org/10.1155/S1073792898000269 Zbl0916.17023
  9. [9] Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys., 2000, 214(1), 1–56 http://dx.doi.org/10.1007/s002200000242 Zbl1061.17025
  10. [10] Dong C., Wang Q., On C 2-cofiniteness of parafermion vertex operator algebras, J. Algebra, 2011, 328, 420–431 http://dx.doi.org/10.1016/j.jalgebra.2010.10.015 Zbl1261.17027
  11. [11] Feingold A.J., Some applications of vertex operators to Kac-Moody algebras, In: Vertex Operators in Mathematics and Physics, Berkeley, November 10–17, 1983, Math. Sci. Res. Inst. Publ., 3, Springer, New York, 1985, 185–206 http://dx.doi.org/10.1007/978-1-4613-9550-8_9 
  12. [12] Frenkel E., Kac V., Wakimoto M., Characters and fusion rules for W-algebras via quantized Drinfel’d-Sokolov reduction, Comm. Math. Phys., 1992, 147(2), 295–328 http://dx.doi.org/10.1007/BF02096589 Zbl0768.17008
  13. [13] Frenkel I.B., Huang Y.-Z., Lepowsky J., On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 104(494), American Mathematical Society, Providence, 1993 
  14. [14] Iohara K., Koga Y., Representation Theory of the Virasoro Algebra, Springer Monogr. Math., Springer, London, 2011 http://dx.doi.org/10.1007/978-0-85729-160-8 Zbl1222.17001
  15. [15] Kac V.G., Wakimoto M., Modular and conformal invariance constraints in representation theory of affine algebras, Adv. in Math., 1988, 70(2), 156–236 http://dx.doi.org/10.1016/0001-8708(88)90055-2 Zbl0661.17016
  16. [16] Kitazume M., Miyamoto M., Yamada H., Ternary codes and vertex operator algebras, J. Algebra, 2000, 223(2), 379–395 http://dx.doi.org/10.1006/jabr.1999.8058 Zbl0977.17026
  17. [17] Li H.-S., Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, In: Moonshine, the Monster, and Related Topics, South Hadley, June 18–23, 1994, Contemp. Math., 193, American Mathematical Society, Providence, 1996, 203–236 http://dx.doi.org/10.1090/conm/193/02373 
  18. [18] Mauriello C., Branching rule decomposition of irreducible level-1 E 6(1)-modules with respect to the affine subalgebra F 4(1), PhD thesis, State University of New York at Binghamton, 2012 (in preparation) 
  19. [19] Milas A., Modular forms and almost linear dependence of graded dimensions, In: Lie Algebras, Vertex Operator Algebras and their Applications, Raleigh, May 17–21, 2005, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 411–424 http://dx.doi.org/10.1090/conm/442/08539 
  20. [20] Miyamoto M., 3-state Potts model and automorphisms of vertex operator algebras of order 3, J. Algebra, 2001, 239(1), 56–76 http://dx.doi.org/10.1006/jabr.2000.8680 Zbl1022.17020
  21. [21] Mukhin E., Factorization of alternating sums of Virasoro characters, J. Combin. Theory Ser. A, 2007, 114(7), 1165–1181 http://dx.doi.org/10.1016/j.jcta.2006.12.002 Zbl1155.17010
  22. [22] Wang W., Rationality of Virasoro vertex operator algebras, Internat. Math. Res. Notices, 1993, 7, 197–211 http://dx.doi.org/10.1155/S1073792893000212 Zbl0791.17029
  23. [23] Xie C.F., Structure of the level two standard modules for the affine Lie algebra A 2(2), Comm. Algebra, 1990, 18(8), 2397–2401 http://dx.doi.org/10.1080/00927879008824029 Zbl0708.17025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.