Page 1 Next

Displaying 1 – 20 of 110

Showing per page

Algebraic loop groups and moduli spaces of bundles

Gerd Faltings (2003)

Journal of the European Mathematical Society

We study algebraic loop groups and affine Grassmannians in positive characteristic. The main results are normality of Schubert-varieties, the construction of line-bundles on the affine Grassmannian, and the proof that they induce line-bundles on the moduli-stack of torsors.

Almost-graded central extensions of Lax operator algebras

Martin Schlichenmaier (2011)

Banach Center Publications

Lax operator algebras constitute a new class of infinite dimensional Lie algebras of geometric origin. More precisely, they are algebras of matrices whose entries are meromorphic functions on a compact Riemann surface. They generalize classical current algebras and current algebras of Krichever-Novikov type. Lax operators for 𝔤𝔩(n), with the spectral parameter on a Riemann surface, were introduced by Krichever. In joint works of Krichever and Sheinman their algebraic structure was revealed and...

Combinatorial bases of modules for affine Lie algebra B 2(1)

Mirko Primc (2013)

Open Mathematics

We construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases...

Currently displaying 1 – 20 of 110

Page 1 Next