Blow-up of solutions for a viscoelastic equation with nonlinear damping
Open Mathematics (2008)
- Volume: 6, Issue: 4, page 568-575
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Ball J., Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser. (2), 1977, 28, 473–486 http://dx.doi.org/10.1093/qmath/28.4.473 Zbl0377.35037
- [2] Berrimi S., Messaoudi S.A., Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations, 2004, 88, 10 pages Zbl1055.35020
- [3] Cavalcanti M.M., Domingos Cavalcanti V.N., Ferreira J., Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 2001, 24, 1043–1053 http://dx.doi.org/10.1002/mma.250 Zbl0988.35031
- [4] Cavalcanti M.M., Domingos Cavalcanti V.N., Lasiecka I., Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential Equations, 2007, 236, 407–459 http://dx.doi.org/10.1016/j.jde.2007.02.004 Zbl1117.35048
- [5] Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A., Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations, 2002, 44, 14 pages Zbl0997.35037
- [6] Esquivel-Avila J.A., Qualitative analysis of a nonlinear wave equation, Discrete Contin. Dyn. Syst., 2004, 10, 787–804 http://dx.doi.org/10.3934/dcds.2004.10.787 Zbl1047.35103
- [7] Gazzola F., Squassina M., Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2006, 23, 185–207 http://dx.doi.org/10.1016/j.anihpc.2005.02.007 Zbl1094.35082
- [8] Glassey R.T., Blow-up theorems for nonlinear wave equations, Math. Z., 1973, 132, 183–203 http://dx.doi.org/10.1007/BF01213863 Zbl0247.35083
- [9] Jiang S., Muñoz Rivera J.E., A global existence theorem for the Dirichlet problem in nonlinear n-dimensional viscoelasticity, Differential Integral Equations, 1996, 9, 791–810 Zbl0862.35071
- [10] Li M.R., Tsai L.Y., Existence and nonexistence of global solutions of some systems of semilinear wave equations, Nonlinear Anal., 2003, 54, 1397–1415 http://dx.doi.org/10.1016/S0362-546X(03)00192-5 Zbl1026.35067
- [11] Liu Y.C., Zhao J.S., Multidimensional viscoelasticity equations with nonlinear damping and source terms, Nonlinear Anal., 2004, 56, 851–865 http://dx.doi.org/10.1016/j.na.2003.09.018 Zbl1057.74007
- [12] Matsuyama T., Ikehata R., On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 1996, 204, 729–753 http://dx.doi.org/10.1006/jmaa.1996.0464 Zbl0962.35025
- [13] Messaoudi S.A., Blow up and global existence in a nonlinear viscoelastic equation, Math. Nachr., 2003, 260, 58–66 http://dx.doi.org/10.1002/mana.200310104 Zbl1035.35082
- [14] Muñoz Rivera J.E., Global solution on a quasilinear wave equation with memory, Boll. Un. Mat. Ital. B (7), 1994, 8, 289-303 Zbl0802.45006
- [15] Ohta M., Remarks on blowup of solutions for nonlinear evolution equations of second order, Adv. Math. Sci. Appl., 1998, 8, 901–910 Zbl0920.35025
- [16] Ono K., On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 1997, 20, 151–177 http://dx.doi.org/10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
- [17] Torrejon R., Young J.M., On a quasilinear wave equation with memory, Nonlinear Anal., 1991, 16, 61–78 http://dx.doi.org/10.1016/0362-546X(91)90131-J
- [18] Vitillaro E., Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal., 1999, 149, 155–182 http://dx.doi.org/10.1007/s002050050171 Zbl0934.35101
- [19] Wu S.T., Tsai L.Y., On global solutions and blow-up solutions for a nonlinear viscoelastic wave equation with nonlinear damping, National Chengchi University, 2004, 9, 479–500
- [20] Yang Z.J., Blowup of solutions for a class of non-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci., 2002, 25, 825–833 http://dx.doi.org/10.1002/mma.312 Zbl1009.35051
- [21] Yang Z.J., Existence and asymptotic behaviour of solutions for a class of quasi-linear evolution equations with non-linear damping and source terms, Math. Methods Appl. Sci., 2002, 25, 795–814 http://dx.doi.org/10.1002/mma.306 Zbl1011.35121
- [22] Yang Z.J., Initial boundary value problem for a class of non-linear strongly damped wave equations, Math. Methods Appl. Sci., 2003, 26, 1047–1066 http://dx.doi.org/10.1002/mma.433 Zbl1106.35318
- [23] Yang Z.J., Chen G.W., Global existence of solutions for quasi-linear wave equations with viscous damping, J. Math. Anal. Appl., 2003, 285, 604–618 http://dx.doi.org/10.1016/S0022-247X(03)00448-7 Zbl1060.35087