Global solutions and finite time blow up for damped semilinear wave equations
Filippo Gazzola; Marco Squassina
Annales de l'I.H.P. Analyse non linéaire (2006)
- Volume: 23, Issue: 2, page 185-207
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGazzola, Filippo, and Squassina, Marco. "Global solutions and finite time blow up for damped semilinear wave equations." Annales de l'I.H.P. Analyse non linéaire 23.2 (2006): 185-207. <http://eudml.org/doc/78689>.
@article{Gazzola2006,
author = {Gazzola, Filippo, Squassina, Marco},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {initial boundary value problem; damped wave equation; blow up; Nehari manifold; high energy initial data},
language = {eng},
number = {2},
pages = {185-207},
publisher = {Elsevier},
title = {Global solutions and finite time blow up for damped semilinear wave equations},
url = {http://eudml.org/doc/78689},
volume = {23},
year = {2006},
}
TY - JOUR
AU - Gazzola, Filippo
AU - Squassina, Marco
TI - Global solutions and finite time blow up for damped semilinear wave equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 2
SP - 185
EP - 207
LA - eng
KW - initial boundary value problem; damped wave equation; blow up; Nehari manifold; high energy initial data
UR - http://eudml.org/doc/78689
ER -
References
top- [1] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
- [2] Ball J., Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst.10 (2004) 31-52. Zbl1056.37084MR2026182
- [3] Carvalho A.N., Cholewa J.W., Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc.66 (2002) 443-463. Zbl1020.35059MR1939206
- [4] Cazenave T., Uniform estimates for solutions of nonlinear Klein–Gordon equations, J. Funct. Anal.60 (1985) 36-55. Zbl0568.35068MR780103
- [5] Esquivel-Avila J., The dynamics of a nonlinear wave equation, J. Math. Anal. Appl.279 (2003) 135-150. Zbl1015.35072MR1970496
- [6] Esquivel-Avila J., Qualitative analysis of a nonlinear wave equation, Discrete Contin. Dyn. Syst.10 (2004) 787-804. Zbl1047.35103MR2018880
- [7] Gazzola F., Finite time blow-up and global solutions for some nonlinear parabolic equations, Differential Integral Equations17 (2004) 983-1012. Zbl1150.35336MR2082457
- [8] F. Gazzola, T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, in press. Zbl1212.35248MR2162421
- [9] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source term, J. Differential Equations109 (1994) 295-308. Zbl0803.35092MR1273304
- [10] Hale J.K., Raugel G., Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys.43 (1992) 63-124. Zbl0751.58033MR1149371
- [11] Haraux A., Dissipative Dynamical Systems and Applications, Res. Appl. Math., vol. 17, Masson, Paris, 1991, 132 p. Zbl0726.58001MR1084372
- [12] Haraux A., Jendoubi M.A., Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations9 (1999) 95-124. Zbl0939.35122MR1714129
- [13] Ikehata R., Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal.27 (1996) 1165-1175. Zbl0866.35071MR1407454
- [14] Ikehata R., Suzuki T., Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J.26 (1996) 475-491. Zbl0873.35010MR1421221
- [15] Jendoubi M.A., Poláčik P., Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 1137-1153. Zbl1046.37045MR2018329
- [16] Levine H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the form , Trans. Amer. Math. Soc.192 (1974) 1-21. Zbl0288.35003MR344697
- [17] Levine H.A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal.5 (1974) 138-146. Zbl0243.35069MR399682
- [18] Levine H.A., Serrin J., Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal.137 (1997) 341-361. Zbl0886.35096MR1463799
- [19] Levine H.A., Todorova G., Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proc. Amer. Math. Soc.129 (2001) 793-805. Zbl0956.35087MR1792187
- [20] Nehari Z., On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc.95 (1960) 101-123. Zbl0097.29501MR111898
- [21] Ohta M., Remarks on blowup of solutions for nonlinear evolution equations of second order, Adv. Math. Sci. Appl.8 (1998) 901-910. Zbl0920.35025MR1657188
- [22] Ono K., On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci.20 (1997) 151-177. Zbl0878.35081MR1430038
- [23] Pata V., Squassina M., On the strongly damped wave equation, Comm. Math. Phys.253 (2004) 511-533. Zbl1068.35077MR2116726
- [24] Payne L.E., Sattinger D.H., Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J.22 (1975) 273-303. Zbl0317.35059MR402291
- [25] Pucci P., Serrin J., Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations150 (1998) 203-214. Zbl0915.35012MR1660250
- [26] Pucci P., Serrin J., Some new results on global nonexistence for abstract evolution with positive initial energy, Topol. Methods Nonlinear Anal.10 (1997) 241-247. Zbl0911.35035MR1634571
- [27] Sattinger D.H., On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal.30 (1968) 148-172. Zbl0159.39102MR227616
- [28] Tsutsumi M., On solutions of semilinear differential equations in a Hilbert space, Math. Japon.17 (1972) 173-193. Zbl0273.34044MR355247
- [29] Vitillaro E., Global existence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal.149 (1999) 155-182. Zbl0934.35101MR1719145
- [30] Webb G.F., Compactness of bounded trajectories of dynamical systems in infinite-dimensional spaces, Proc. Roy. Soc. Edinburgh Sect. A84 (1979) 19-33. Zbl0414.34042MR549869
- [31] Willem M., Minimax Theorems, Progress Nonlinear Differential Equations Appl., vol. 24, Birkhäuser Boston, Boston, MA, 1996, 162 p. Zbl0856.49001MR1400007
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.