Global solutions and finite time blow up for damped semilinear wave equations

Filippo Gazzola; Marco Squassina

Annales de l'I.H.P. Analyse non linéaire (2006)

  • Volume: 23, Issue: 2, page 185-207
  • ISSN: 0294-1449

How to cite

top

Gazzola, Filippo, and Squassina, Marco. "Global solutions and finite time blow up for damped semilinear wave equations." Annales de l'I.H.P. Analyse non linéaire 23.2 (2006): 185-207. <http://eudml.org/doc/78689>.

@article{Gazzola2006,
author = {Gazzola, Filippo, Squassina, Marco},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {initial boundary value problem; damped wave equation; blow up; Nehari manifold; high energy initial data},
language = {eng},
number = {2},
pages = {185-207},
publisher = {Elsevier},
title = {Global solutions and finite time blow up for damped semilinear wave equations},
url = {http://eudml.org/doc/78689},
volume = {23},
year = {2006},
}

TY - JOUR
AU - Gazzola, Filippo
AU - Squassina, Marco
TI - Global solutions and finite time blow up for damped semilinear wave equations
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2006
PB - Elsevier
VL - 23
IS - 2
SP - 185
EP - 207
LA - eng
KW - initial boundary value problem; damped wave equation; blow up; Nehari manifold; high energy initial data
UR - http://eudml.org/doc/78689
ER -

References

top
  1. [1] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Funct. Anal.14 (1973) 349-381. Zbl0273.49063MR370183
  2. [2] Ball J., Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst.10 (2004) 31-52. Zbl1056.37084MR2026182
  3. [3] Carvalho A.N., Cholewa J.W., Local well posedness for strongly damped wave equations with critical nonlinearities, Bull. Austral. Math. Soc.66 (2002) 443-463. Zbl1020.35059MR1939206
  4. [4] Cazenave T., Uniform estimates for solutions of nonlinear Klein–Gordon equations, J. Funct. Anal.60 (1985) 36-55. Zbl0568.35068MR780103
  5. [5] Esquivel-Avila J., The dynamics of a nonlinear wave equation, J. Math. Anal. Appl.279 (2003) 135-150. Zbl1015.35072MR1970496
  6. [6] Esquivel-Avila J., Qualitative analysis of a nonlinear wave equation, Discrete Contin. Dyn. Syst.10 (2004) 787-804. Zbl1047.35103MR2018880
  7. [7] Gazzola F., Finite time blow-up and global solutions for some nonlinear parabolic equations, Differential Integral Equations17 (2004) 983-1012. Zbl1150.35336MR2082457
  8. [8] F. Gazzola, T. Weth, Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level, Differential Integral Equations, in press. Zbl1212.35248MR2162421
  9. [9] Georgiev V., Todorova G., Existence of a solution of the wave equation with nonlinear damping and source term, J. Differential Equations109 (1994) 295-308. Zbl0803.35092MR1273304
  10. [10] Hale J.K., Raugel G., Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys.43 (1992) 63-124. Zbl0751.58033MR1149371
  11. [11] Haraux A., Dissipative Dynamical Systems and Applications, Res. Appl. Math., vol. 17, Masson, Paris, 1991, 132 p. Zbl0726.58001MR1084372
  12. [12] Haraux A., Jendoubi M.A., Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations9 (1999) 95-124. Zbl0939.35122MR1714129
  13. [13] Ikehata R., Some remarks on the wave equations with nonlinear damping and source terms, Nonlinear Anal.27 (1996) 1165-1175. Zbl0866.35071MR1407454
  14. [14] Ikehata R., Suzuki T., Stable and unstable sets for evolution equations of parabolic and hyperbolic type, Hiroshima Math. J.26 (1996) 475-491. Zbl0873.35010MR1421221
  15. [15] Jendoubi M.A., Poláčik P., Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping, Proc. Roy. Soc. Edinburgh Sect. A133 (2003) 1137-1153. Zbl1046.37045MR2018329
  16. [16] Levine H.A., Instability and nonexistence of global solutions to nonlinear wave equations of the form P u t t = - A u + F u , Trans. Amer. Math. Soc.192 (1974) 1-21. Zbl0288.35003MR344697
  17. [17] Levine H.A., Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal.5 (1974) 138-146. Zbl0243.35069MR399682
  18. [18] Levine H.A., Serrin J., Global nonexistence theorems for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal.137 (1997) 341-361. Zbl0886.35096MR1463799
  19. [19] Levine H.A., Todorova G., Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proc. Amer. Math. Soc.129 (2001) 793-805. Zbl0956.35087MR1792187
  20. [20] Nehari Z., On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc.95 (1960) 101-123. Zbl0097.29501MR111898
  21. [21] Ohta M., Remarks on blowup of solutions for nonlinear evolution equations of second order, Adv. Math. Sci. Appl.8 (1998) 901-910. Zbl0920.35025MR1657188
  22. [22] Ono K., On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci.20 (1997) 151-177. Zbl0878.35081MR1430038
  23. [23] Pata V., Squassina M., On the strongly damped wave equation, Comm. Math. Phys.253 (2004) 511-533. Zbl1068.35077MR2116726
  24. [24] Payne L.E., Sattinger D.H., Saddle points and instability of nonlinear hyperbolic equations, Israel Math. J.22 (1975) 273-303. Zbl0317.35059MR402291
  25. [25] Pucci P., Serrin J., Global nonexistence for abstract evolution equations with positive initial energy, J. Differential Equations150 (1998) 203-214. Zbl0915.35012MR1660250
  26. [26] Pucci P., Serrin J., Some new results on global nonexistence for abstract evolution with positive initial energy, Topol. Methods Nonlinear Anal.10 (1997) 241-247. Zbl0911.35035MR1634571
  27. [27] Sattinger D.H., On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal.30 (1968) 148-172. Zbl0159.39102MR227616
  28. [28] Tsutsumi M., On solutions of semilinear differential equations in a Hilbert space, Math. Japon.17 (1972) 173-193. Zbl0273.34044MR355247
  29. [29] Vitillaro E., Global existence theorems for a class of evolution equations with dissipation, Arch. Rational Mech. Anal.149 (1999) 155-182. Zbl0934.35101MR1719145
  30. [30] Webb G.F., Compactness of bounded trajectories of dynamical systems in infinite-dimensional spaces, Proc. Roy. Soc. Edinburgh Sect. A84 (1979) 19-33. Zbl0414.34042MR549869
  31. [31] Willem M., Minimax Theorems, Progress Nonlinear Differential Equations Appl., vol. 24, Birkhäuser Boston, Boston, MA, 1996, 162 p. Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.