Computation of the fundamental solution of electrodynamics for anisotropic materials
Valery Yakhno; Handan Yaslan; Tatiana Yakhno
Open Mathematics (2012)
- Volume: 10, Issue: 1, page 188-203
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topValery Yakhno, Handan Yaslan, and Tatiana Yakhno. "Computation of the fundamental solution of electrodynamics for anisotropic materials." Open Mathematics 10.1 (2012): 188-203. <http://eudml.org/doc/269300>.
@article{ValeryYakhno2012,
abstract = {A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform. Applying the suggested approach, the fundamental solution components are computed in general anisotropic media. Computational examples confirm robustness of the suggested method.},
author = {Valery Yakhno, Handan Yaslan, Tatiana Yakhno},
journal = {Open Mathematics},
keywords = {Maxwell’s equations; Fundamental solution; Simulation; Maxwell's equations; fundamental solution; simulation},
language = {eng},
number = {1},
pages = {188-203},
title = {Computation of the fundamental solution of electrodynamics for anisotropic materials},
url = {http://eudml.org/doc/269300},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Valery Yakhno
AU - Handan Yaslan
AU - Tatiana Yakhno
TI - Computation of the fundamental solution of electrodynamics for anisotropic materials
JO - Open Mathematics
PY - 2012
VL - 10
IS - 1
SP - 188
EP - 203
AB - A new method for computation of the fundamental solution of electrodynamics for general anisotropic nondispersive materials is suggested. It consists of several steps: equations for each column of the fundamental matrix are reduced to a symmetric hyperbolic system; using the Fourier transform with respect to space variables and matrix transformations, formulae for Fourier images of the fundamental matrix columns are obtained; finally, the fundamental solution is computed by the inverse Fourier transform. Applying the suggested approach, the fundamental solution components are computed in general anisotropic media. Computational examples confirm robustness of the suggested method.
LA - eng
KW - Maxwell’s equations; Fundamental solution; Simulation; Maxwell's equations; fundamental solution; simulation
UR - http://eudml.org/doc/269300
ER -
References
top- [1] Burridge R., Qian J., The fundamental solution of the time-dependent system of crystal optics, European J. Appl. Math., 2006, 17(1), 63–94 http://dx.doi.org/10.1017/S0956792506006486 Zbl1160.78001
- [2] Cohen G.C., Higher-Order Numerical Methods for Transient Wave Equations, Sci. Comput., Springer, Berlin, 2002 Zbl0985.65096
- [3] Cohen G.C., Heikkola E., Joly P., Neittaanmäki P. (Eds.), Mathematical and Numerical Aspects of Waves Propagation, Jyväskylä, June 30–July 4, 2003, Springer, Berlin, 2003 Zbl1029.00072
- [4] Cottis P.G., Kondylis G.D., Properties of the dyadic Green’s function for an unbounded anisotropic medium, IEEE Trans. Antennas and Propagation, 1995, 43(2), 154–161 http://dx.doi.org/10.1109/8.366377 Zbl0944.78514
- [5] Courant R., Hilbert D., Methods of Mathematical Physics. Vol. 2: Partial Differential Equations, Interscience, New York-London, 1962 Zbl0099.29504
- [6] Degerfeldt D., Rylander T., A brick-tetrahedron finite-element interface with stable hybrid explicit-implicit timestepping for Maxwell’s equations, J. Comput. Phys., 2006, 220(1), 383–393 http://dx.doi.org/10.1016/j.jcp.2006.05.016 Zbl1116.78021
- [7] Dmitriev V.I., Silkin A.N., Farzan R., Tensor Green function for the system of Maxwell’s equations in a layered medium, Comput. Math. Model., 2002, 13(2), 107–118 http://dx.doi.org/10.1023/A:1015253228544 Zbl1018.78004
- [8] Dolgaev S.I., Lyalin A.A., Simakin A.V., Shafeev G.A., Fast etching of sapphire by a visible range quasi-cw laser radiation, Applied Surface Science, 1996, 96–98, 491–495 http://dx.doi.org/10.1016/0169-4332(95)00501-3
- [9] Haba Z., Green functions and propagation of waves in strongly inhomogeneous media, J. Phys. A, 2004, 37(39), 9295–9302 http://dx.doi.org/10.1088/0305-4470/37/39/015 Zbl1064.78005
- [10] Hesthaven J.S., Warburton T., Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys., 2002, 181(1), 186–221 http://dx.doi.org/10.1006/jcph.2002.7118
- [11] Kong J.A., Electromagnetic Wave Theory, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1986
- [12] Li L.-W., Liu S., Leong M.-S., Yeo T.-S., Circular cylindrical waveguide filled with uniaxial anisotropic media electromagnetic fields and dyadic Green’s functions, IEEE Trans. Microwave Theory Tech., 2001, 49(7), 1361–1364 http://dx.doi.org/10.1109/22.932239
- [13] Ludwig D., Conical refraction in crystal optics and hydromagnetics, Comm. Pure Appl. Math., 1961, 14(2), 113–124 http://dx.doi.org/10.1002/cpa.3160140203 Zbl0112.21202
- [14] Melrose R.B., Uhlmann G.A., Microlocal structure of involutive conical refraction, Duke Math. J., 1979, 46(3), 571–582 http://dx.doi.org/10.1215/S0012-7094-79-04630-1 Zbl0422.58026
- [15] Monk P., Finite Element Methods for Maxwell’s Equations, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 2003 Zbl1024.78009
- [16] Ortner N., Wagner P., Fundamental matrices of homogeneous hyperbolic systems. Applications to crystal optics, elastodynamics, and piezoelectromagnetism, ZAMM Z. Angew. Math. Mech., 2004, 84(5), 314–346 http://dx.doi.org/10.1002/zamm.200310130 Zbl1066.46028
- [17] Reed M., Simon B., Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness, Academic Press, New York-London, 1975 Zbl0308.47002
- [18] Taflove A., Hagness S.C., Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed., Artech House, Boston, 2000 Zbl0963.78001
- [19] Tikhonov A.N., Samarskii A.A., Equations of Mathematical Physics, Macmillan, New York, 1963 Zbl0111.29008
- [20] Uhlmann G.A., Light intensity distribution in conical refraction, Comm. Pure Appl. Math., 1982, 35(1), 69–80 http://dx.doi.org/10.1002/cpa.3160350104 Zbl0516.35055
- [21] Vladimirov V.S., Equations of Mathematical Physics, Pure and Applied Mathematics, 3, Marcel Dekker, New York, 1971
- [22] Vladimirov V.S., Generalized Functions in Mathematical Physics, Mir, Moscow, 1979
- [23] Wijnands F., Pendry J.B., Garcia-Vidal F.J., Bell P.M., Roberts P.J., Martiín Moreno L., Green’s functions for Maxwell’s equations: application to spontaneous emission, Optical and Quantum Electronics, 1997, 29, 199–216 http://dx.doi.org/10.1023/A:1018506222632
- [24] Yakhno V.G., Constructing Green’s function for the time-dependent Maxwell system in anisotropic dielectrics, J. Phys. A, 2005, 38(10), 2277–2287 http://dx.doi.org/10.1088/0305-4470/38/10/015 Zbl1060.78003
- [25] Yakhno V.G., Computing and simulation of time-dependent electromagnetic fields in homogeneous anisotropic materials, Internat. J. Engrg. Sci., 2008, 46(5), 411–426 http://dx.doi.org/10.1016/j.ijengsci.2007.12.005 Zbl1213.78029
- [26] Yakhno V.G., Yakhno T.M., Modelling and simulation of electric and magnetic fields in homogeneous non-dispersive anisotropic materials, Comput. & Structures, 2007, 85(21–22), 1623–1634 http://dx.doi.org/10.1016/j.compstruc.2007.02.019
- [27] Yakhno V.G., Yakhno T.M., Kasap M., A novel approach for modeling and simulation of electromagnetic waves in anisotropic dielectrics, Internat. J. Solids Structures, 2006, 43(20), 6261–6276 http://dx.doi.org/10.1016/j.ijsolstr.2005.07.028 Zbl1121.78322
- [28] Yee K.S., Numerical solution of initial boundary value problems involving MaxwellŠs equations in isotropic media, IEEE Trans. Antennas and Propagation, 1966, 14(3), 302–307 http://dx.doi.org/10.1109/TAP.1966.1138693 Zbl1155.78304
- [29] Yim Y.-S., Shin S.-Y., Lithium niobate integrated-optic voltage sensor with variable sensing ranges, Optics Communications, 1998, 152(4–6), 225–228 http://dx.doi.org/10.1016/S0030-4018(98)00198-9
- [30] Zienkiewicz O.C., Taylor R.L., The Finite Element Method, Butterworth-Heinemann, Oxford, 2000 Zbl0991.74002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.