# A note on a Brill-Noether locus over a non-hyperelliptic curve of genus 4

Open Mathematics (2009)

- Volume: 7, Issue: 4, page 617-622
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topSukmoon Huh. "A note on a Brill-Noether locus over a non-hyperelliptic curve of genus 4." Open Mathematics 7.4 (2009): 617-622. <http://eudml.org/doc/269302>.

@article{SukmoonHuh2009,

abstract = {We prove that a certain Brill-Noether locus over a non-hyperelliptic curve C of genus 4, is isomorphic to the Donagi-Izadi cubic threefold in the case when the pencils of the two trigonal line bundles of C coincide.},

author = {Sukmoon Huh},

journal = {Open Mathematics},

keywords = {Moduli; Hirzebruch surface; Stable sheaf; Brill-Noether loci; moduli space; stable bundle; Brill-Noether locus},

language = {eng},

number = {4},

pages = {617-622},

title = {A note on a Brill-Noether locus over a non-hyperelliptic curve of genus 4},

url = {http://eudml.org/doc/269302},

volume = {7},

year = {2009},

}

TY - JOUR

AU - Sukmoon Huh

TI - A note on a Brill-Noether locus over a non-hyperelliptic curve of genus 4

JO - Open Mathematics

PY - 2009

VL - 7

IS - 4

SP - 617

EP - 622

AB - We prove that a certain Brill-Noether locus over a non-hyperelliptic curve C of genus 4, is isomorphic to the Donagi-Izadi cubic threefold in the case when the pencils of the two trigonal line bundles of C coincide.

LA - eng

KW - Moduli; Hirzebruch surface; Stable sheaf; Brill-Noether loci; moduli space; stable bundle; Brill-Noether locus

UR - http://eudml.org/doc/269302

ER -

## References

top- [1] Beauville A., Complex algebraic surfaces, second ed., London Mathematical Society Student Texts, 34, Cambridge University Press, Cambridge, 1996 Zbl0849.14014
- [2] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York, 1977 Zbl0367.14001
- [3] Huh S., A moduli space of stable sheaves on a smooth quadric in ℙ3, preprint available at http://arxiv.org/abs/0810.4392
- [4] Huybrechts D., Lehn M., The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997 Zbl0872.14002
- [5] Lange H., Higher secant varieties of curves and the theorem of Nagata on ruled surfaces, Manuscripta Math., 1984, 47, 263–269 http://dx.doi.org/10.1007/BF01174597[Crossref] Zbl0578.14044
- [6] Okonek C, Schneider M., Spindler H., Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser Boston, Boston, MA, 1980 Zbl0438.32016
- [7] Oxbury W.M., Pauly C, Previato E., Subvarieties of SUC(2) and 2ν-divisors in the Jacobian, Trans. Amer. Math. Soc., 1998, 350(9), 3587–3614 http://dx.doi.org/10.1090/S0002-9947-98-02148-5[Crossref] Zbl0898.14014

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.