Quotients of peripherally continuous functions
Open Mathematics (2011)
- Volume: 9, Issue: 4, page 765-771
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Bartoszyński T., Judah H., Set Theory: on the Structure of the Real Line, A.K. Peters, Wellesley, 1995 Zbl0834.04001
- [2] Ciesielski K., Maliszewski A., Cardinal invariants concerning bounded families of extendable and almost continuous functions, Proc. Amer. Math. Soc., 1998, 126(2), 471–479 http://dx.doi.org/10.1090/S0002-9939-98-04098-2 Zbl0899.26001
- [3] Ciesielski K., Natkaniec T., Algebraic properties of the class of Sierpiński-Zygmund functions, Topology Appl., 1997, 79(1), 75–99 http://dx.doi.org/10.1016/S0166-8641(96)00128-9 Zbl0890.26002
- [4] Ciesielski K., Recław I., Cardinal invariants concerning extendable and peripherally continuous functions, Real Anal. Exchange, 1995/96, 21(2), 459–472 Zbl0879.26005
- [5] Jałocha J., Quotients of quasi-continuous functions, J. Appl. Anal., 2000, 6(2), 251–258 http://dx.doi.org/10.1515/JAA.2000.251 Zbl0966.26004
- [6] Jordan F., Cardinal invariants connected with adding real functions, Real Anal. Exchange, 1996/97, 22(2), 696–713 Zbl0942.26005
- [7] Kosman J., Maliszewski A., Quotients of Darboux-like functions, Real Anal. Exchange, 2009/10, 35(1), 243–251 Zbl1203.26004
- [8] Natkaniec T., Almost continuity, Real Anal. Exchange, 1991/92, 17(2), 462–520
- [9] Rudin M.E., Martin’s Axiom, In: Handbook of Mathematical Logic, Stud. Logic Found. Math., 90, North-Holland, Amsterdam-New York-Oxford, 1977, 491–501 http://dx.doi.org/10.1016/S0049-237X(08)71111-X