The role of the Ellingsrud-Strømme construction in the classification of instantons

Laurent Gruson; Frédéric Han

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1188-1197
  • ISSN: 2391-5455

Abstract

top
We review a construction of Ellingsrud-Strømme relating instantons of charge n on the ordinary projective space and theta-characteristics on a plane curve of degree n with some extra-structure.

How to cite

top

Laurent Gruson, and Frédéric Han. "The role of the Ellingsrud-Strømme construction in the classification of instantons." Open Mathematics 10.4 (2012): 1188-1197. <http://eudml.org/doc/269320>.

@article{LaurentGruson2012,
abstract = {We review a construction of Ellingsrud-Strømme relating instantons of charge n on the ordinary projective space and theta-characteristics on a plane curve of degree n with some extra-structure.},
author = {Laurent Gruson, Frédéric Han},
journal = {Open Mathematics},
keywords = {Instanton; Jumping line; Theta-characteristic; Degeneracy locus; Strassen equation; instanton; jumping line; theta-characteristic; degeneracy locus},
language = {eng},
number = {4},
pages = {1188-1197},
title = {The role of the Ellingsrud-Strømme construction in the classification of instantons},
url = {http://eudml.org/doc/269320},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Laurent Gruson
AU - Frédéric Han
TI - The role of the Ellingsrud-Strømme construction in the classification of instantons
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1188
EP - 1197
AB - We review a construction of Ellingsrud-Strømme relating instantons of charge n on the ordinary projective space and theta-characteristics on a plane curve of degree n with some extra-structure.
LA - eng
KW - Instanton; Jumping line; Theta-characteristic; Degeneracy locus; Strassen equation; instanton; jumping line; theta-characteristic; degeneracy locus
UR - http://eudml.org/doc/269320
ER -

References

top
  1. [1] Barth W., Moduli of vector bundles on the projective plane, Invent. Math., 1977, 42, 63–91 http://dx.doi.org/10.1007/BF01389784 Zbl0386.14005
  2. [2] Barth W., Some properties of stable rank-2 vector bundles on ℙn, Math. Ann., 1977, 226(2), 125–150 http://dx.doi.org/10.1007/BF01360864 Zbl0332.32021
  3. [3] Böhmer W., Trautmann G., Special instanton bundles and Poncelet curves, In: Singularities, Representation of Algebras and Vector Bundles, Lambrecht, December 13–17, 1985, Lecture Notes in Math., 1273, Springer, Berlin, 1987, 325–336 http://dx.doi.org/10.1007/BFb0078852 
  4. [4] Ellingsrud G., Strømme S.A., Stable rank-2 vector bundles on ℙ3 with c 1 = 0 and c 2 = 3, Math. Ann., 1981, 255(1), 123–135 http://dx.doi.org/10.1007/BF01450561 Zbl0438.14009
  5. [5] Gruson L., Skiti M., 3-instantons et réseaux de quadriques, Math. Ann., 1994, 298(2), 253–273 http://dx.doi.org/10.1007/BF01459736 Zbl0810.14008
  6. [6] Han F., Codimension du schéma des multisauteuses d’un 4- ou 5-instanton, PhD thesis, Université de Lille 1, 1996 
  7. [7] Landsberg J.M., Manivel L., Generalizations of Strassen’s equations for secant varieties of Segre varieties, Comm. Algebra, 2008, 36(2), 405–422 http://dx.doi.org/10.1080/00927870701715746 Zbl1137.14038
  8. [8] Macdonald I.G., Symmetric Functions and Hall Polynomials, Oxford Math. Monogr., Clarendon Press, Oxford University Press, New York, 1995 Zbl0824.05059
  9. [9] Ottaviani G., Symplectic bundles on the plane, secant varieties and Lüroth quartics revisited, In: Vector Bundles and Low Codimensional Subvarieties: State of the Art and Recent Developments, Povo-Trento, September 11–16, 2006, Quad. Mat., 21, Seconda Università degli Studi di Napoli, Caserta, 2007, 315–352 
  10. [10] Sorger C., Thêta-caractéristiques des courbes tracées sur une surface lisse, J. Reine Angew. Math., 1993, 435, 83–118 
  11. [11] Tjurin A.N., On the superpositions of mathematical instantons, In: Arithmetic and Geometry. II, Progr. Math., 36, Birkhäuser, Boston, 1983, 433–450 
  12. [12] Vallès J., Fibrés de Schwarzenberger et coniques de droites sauteuses, Bull. Soc. Math. France, 2000, 128(3), 433–449 Zbl0955.14009
  13. [13] Weyman J., Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Math., 149, Cambridge University Press, Cambridge, 2003 http://dx.doi.org/10.1017/CBO9780511546556 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.