On restrictions of generic modules of tame algebras
Raymundo Bautista; Efrén Pérez; Leonardo Salmerón
Open Mathematics (2013)
- Volume: 11, Issue: 3, page 423-434
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topRaymundo Bautista, Efrén Pérez, and Leonardo Salmerón. "On restrictions of generic modules of tame algebras." Open Mathematics 11.3 (2013): 423-434. <http://eudml.org/doc/269322>.
@article{RaymundoBautista2013,
abstract = {Given a convex algebra ∧0 in the tame finite-dimensional basic algebra ∧, over an algebraically closed field, we describe a special type of restriction of the generic ∧-modules.},
author = {Raymundo Bautista, Efrén Pérez, Leonardo Salmerón},
journal = {Open Mathematics},
keywords = {Differential tensor algebras; Ditalgebras; Reduction functors; Endolength; Generic modules; Tame algebras; finite-dimensional basic algebras; differential tensor algebras; ditalgebras; reduction functors; endolengths; generic modules; tame algebras},
language = {eng},
number = {3},
pages = {423-434},
title = {On restrictions of generic modules of tame algebras},
url = {http://eudml.org/doc/269322},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Raymundo Bautista
AU - Efrén Pérez
AU - Leonardo Salmerón
TI - On restrictions of generic modules of tame algebras
JO - Open Mathematics
PY - 2013
VL - 11
IS - 3
SP - 423
EP - 434
AB - Given a convex algebra ∧0 in the tame finite-dimensional basic algebra ∧, over an algebraically closed field, we describe a special type of restriction of the generic ∧-modules.
LA - eng
KW - Differential tensor algebras; Ditalgebras; Reduction functors; Endolength; Generic modules; Tame algebras; finite-dimensional basic algebras; differential tensor algebras; ditalgebras; reduction functors; endolengths; generic modules; tame algebras
UR - http://eudml.org/doc/269322
ER -
References
top- [1] Assem I., Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras, 1, London Math. Soc. Stud. Texts, 65, Cambridge University Press, Cambridge, 2006 http://dx.doi.org/10.1017/CBO9780511614309[Crossref] Zbl1092.16001
- [2] Bautista R., Pérez E., Salmerón L., On restrictions of indecomposables of tame algebras, Colloq. Math., 2011, 124(1), 35–60 http://dx.doi.org/10.4064/cm124-1-4[Crossref] Zbl1264.16012
- [3] Bautista R., Pérez E., Salmerón L., On generically tame algebras over perfect fields, Adv. Math., 2012, 231(1), 436–481 http://dx.doi.org/10.1016/j.aim.2012.04.029[Crossref][WoS] Zbl1287.16019
- [4] Bautista R., Salmerón L., Zuazua R., Differential Tensor Algebras and their Module Categories, London Math. Soc. Lecture Note Ser., 362, Cambridge University Press, Cambridge, 2009 http://dx.doi.org/10.1017/CBO9781139107105[Crossref] Zbl1266.16007
- [5] Crawley-Boevey W.W., Tame algebras and generic modules, Proc. London Math. Soc., 1991, 63(2), 241–265 http://dx.doi.org/10.1112/plms/s3-63.2.241[Crossref] Zbl0741.16005
- [6] Drozd Yu.A., Tame and wild matrix problems, In: Representations and Quadratic Forms, 154, Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, 1979, 39–74 (in Russian)
- [7] Simson D., Skowronski A., Elements of the Representation Theory of Associative Algebras, 2, London Math. Soc. Stud. Texts, 71, Cambridge University Press, Cambridge, 2007 http://dx.doi.org/10.1017/CBO9780511619403[Crossref] Zbl1131.16001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.