Walsh-Marcinkiewicz means and Hardy spaces

Károly Nagy; George Tephnadze

Open Mathematics (2014)

  • Volume: 12, Issue: 8, page 1214-1228
  • ISSN: 2391-5455

Abstract

top
The main aim of this paper is to investigate the Walsh-Marcinkiewicz means on the Hardy space H p, when 0 < p < 2/3. We define a weighted maximal operator of Walsh-Marcinkiewicz means and establish some of its properties. With its aid we provide a necessary and sufficient condition for convergence of the Walsh-Marcinkiewicz means in terms of modulus of continuity on the Hardy space H p, and prove a strong convergence theorem for the Walsh-Marcinkiewicz means.

How to cite

top

Károly Nagy, and George Tephnadze. "Walsh-Marcinkiewicz means and Hardy spaces." Open Mathematics 12.8 (2014): 1214-1228. <http://eudml.org/doc/269327>.

@article{KárolyNagy2014,
abstract = {The main aim of this paper is to investigate the Walsh-Marcinkiewicz means on the Hardy space H p, when 0 < p < 2/3. We define a weighted maximal operator of Walsh-Marcinkiewicz means and establish some of its properties. With its aid we provide a necessary and sufficient condition for convergence of the Walsh-Marcinkiewicz means in terms of modulus of continuity on the Hardy space H p, and prove a strong convergence theorem for the Walsh-Marcinkiewicz means.},
author = {Károly Nagy, George Tephnadze},
journal = {Open Mathematics},
keywords = {Walsh system; Marcinkiewicz means; Maximal operator; Two-dimensional system; Hardy space; Strong convergence; Modulus of continuity; two-dimensional Walsh system; maximal operator; dyadic Hardy space; strong convergence; modulus of continuity},
language = {eng},
number = {8},
pages = {1214-1228},
title = {Walsh-Marcinkiewicz means and Hardy spaces},
url = {http://eudml.org/doc/269327},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Károly Nagy
AU - George Tephnadze
TI - Walsh-Marcinkiewicz means and Hardy spaces
JO - Open Mathematics
PY - 2014
VL - 12
IS - 8
SP - 1214
EP - 1228
AB - The main aim of this paper is to investigate the Walsh-Marcinkiewicz means on the Hardy space H p, when 0 < p < 2/3. We define a weighted maximal operator of Walsh-Marcinkiewicz means and establish some of its properties. With its aid we provide a necessary and sufficient condition for convergence of the Walsh-Marcinkiewicz means in terms of modulus of continuity on the Hardy space H p, and prove a strong convergence theorem for the Walsh-Marcinkiewicz means.
LA - eng
KW - Walsh system; Marcinkiewicz means; Maximal operator; Two-dimensional system; Hardy space; Strong convergence; Modulus of continuity; two-dimensional Walsh system; maximal operator; dyadic Hardy space; strong convergence; modulus of continuity
UR - http://eudml.org/doc/269327
ER -

References

top
  1. [1] Blahota I., On a norm inequality with respect to Vilenkin-like systems, Acta Math. Hungar., 2000, 89(1–2), 15–27 http://dx.doi.org/10.1023/A:1026769207159 Zbl0973.42020
  2. [2] Blahota I., Gát G., Goginava U., Maximal operators of Fejér means of Vilenkin-Fourier series, JIPAM. J. Inequal. Pure Appl. Math., 2006, 7(4), #149 Zbl1232.42024
  3. [3] Blahota I., Gát G., Goginava U., Maximal operators of Fejér means of double Vilenkin-Fourier series, Colloq. Math., 2007, 107(2), 287–296 http://dx.doi.org/10.4064/cm107-2-8 Zbl1117.42006
  4. [4] Fine N.J., Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. U.S.A., 1955, 41(8), 588–591 http://dx.doi.org/10.1073/pnas.41.8.588 Zbl0065.05303
  5. [5] Fujii N., A maximal inequality for H 1-functions on the generalized Walsh-Paley group, Proc. Amer. Math. Soc., 1979, 77(1), 111–116 
  6. [6] Gát G., Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar., 1993, 61(1–2), 131–149 http://dx.doi.org/10.1007/BF01872107 
  7. [7] Glukhov V.A., Summation of multiple Fourier series in multiplicative systems, Mat. Zametki, 1986, 39(5), 665–673 (in Russian) Zbl0607.42020
  8. [8] Goginava U., The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx., 2006, 12(3), 295–302 
  9. [9] Goginava U., Maximal operators of Fejér-Walsh means, Acta Sci. Math. (Szeged), 2008, 74(3–4), 615–624 Zbl1199.42127
  10. [10] Goginava U., Weak type inequality for the maximal operator of the Marcinkiewicz-Fejér means of the twodimensional Walsh-Fourier series, J. Approx. Theory, 2008, 154(2), 161–180 http://dx.doi.org/10.1016/j.jat.2008.03.012 Zbl1183.42028
  11. [11] Goginava U., The weak type inequality for the Walsh system, Studia Math., 2008, 185(1), 35–48 http://dx.doi.org/10.4064/sm185-1-2 Zbl1213.42098
  12. [12] Goginava U., The martingale Hardy type inequality for Marcinkiewicz-Fejér means of two-dimensional conjugate Walsh-Fourier series, Acta Math. Sin. (Engl. Ser.), 2011, 27(10), 1949–1958 http://dx.doi.org/10.1007/s10114-011-9551-7 
  13. [13] Nagy K., Some convergence properties of the Walsh-Kaczmarz system with respect to the Marcinkiewicz means, Rend. Circ. Mat. Palermo (2) Suppl., 2005, 76, 503–516 Zbl1214.42056
  14. [14] Nagy K., On the maximal operator of Walsh-Marcinkiewicz means, Publ. Math. Debrecen., 2011, 78(3–4), 633–646 http://dx.doi.org/10.5486/PMD.2011.4829 Zbl1249.42013
  15. [15] Pál J., Simon P., On a generalization of the concept of derivative, Acta Math. Acad. Sci. Hungar., 1977, 29(1–2), 155–164 http://dx.doi.org/10.1007/BF01896477 Zbl0345.42011
  16. [16] Schipp F., Certain rearrangements of series in the Walsh system, Mat. Zametki, 1975, 18(2), 193–201 (in Russian) 
  17. [17] Schipp F., Wade W.R., Simon P., Walsh Series, Adam Hilger, Bristol, 1990 
  18. [18] Simon P., Investigations with respect to the Vilenkin system, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1985, 27, 87–101 Zbl0586.43001
  19. [19] Simon P., Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar., 1987, 49(3-4), 425–431 http://dx.doi.org/10.1007/BF01951006 
  20. [20] Simon P., Cesaro summability with respect to two-parameter Walsh systems, Monatsh. Math., 2000, 131(4), 321–334 http://dx.doi.org/10.1007/s006050070004 Zbl0976.42014
  21. [21] Simon P., Remarks on strong convergence with respect to the Walsh system, East J. Approx., 2000, 6, 261–276 Zbl1084.42513
  22. [22] Tephnadze G., Fejér means of Vilenkin-Fourier series, Stud. Sci. Math. Hungar., 2012, 49(1), 79–90 Zbl1265.42099
  23. [23] Tephnadze G., On the maximal operator of Vilenkin-Fejér means, Turkish J. Math., 2013, 37(2), 308–318 Zbl1278.42037
  24. [24] Tephnadze G., On the maximal operators of Vilenkin-Fejér means on Hardy spaces, Math. Inequal. Appl., 2013, 16(1), 301–312 Zbl1263.42008
  25. [25] Tephnadze G., Strong convergence theorems for Walsh-Fejér means, Acta Math. Hungar., 2014, 142(1), 244–259 http://dx.doi.org/10.1007/s10474-013-0361-5 Zbl1313.42086
  26. [26] Tephnadze G., A note on the norm convergence of Vilenkin-Fejér means, Georgian Math. J. (in press) Zbl1303.42012
  27. [27] Weisz F., Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Math., 1568, Springer, Berlin, 1994 Zbl0796.60049
  28. [28] Weisz F., Cesàro summability of one- and two-dimensional Walsh-Fourier series, Anal. Math., 1996, 22(3), 229–242 http://dx.doi.org/10.1007/BF02205221 Zbl0866.42020
  29. [29] Weisz F., Hardy spaces and Cesàro means of two-dimensional Fourier series, In: Approximation Theory and Function Series, Budapest, August 21–25, 1995, Bolyai Soc. Math. Studies, 5, János Bolyai Mathematical Society, Budapest, 1996, 353–367 
  30. [30] Weisz F., Convergence of double Walsh-Fourier series and Hardy spaces, Approx. Theory Appl. (N.S.), 2001, 17(2), 32–44 
  31. [31] Weisz F., Summability of Multi-Dimensional Fourier series and Hardy Space, Math. Appl., 541, Kluwer, Dordrecht, 2002 http://dx.doi.org/10.1007/978-94-017-3183-6 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.