A refined Newton’s mesh independence principle for a class of optimal shape design problems
Open Mathematics (2006)
- Volume: 4, Issue: 4, page 562-572
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] E.L. Allgower, K. Böhmer, F.A. Potra and W.C. Rheinboldt: “A mesh-independence principle for operator equations and their discretizations”, SIAM J. Numer. Anal., Vol. 23, (1986). Zbl0591.65043
- [2] I.K. Argyros: “A mesh independence principle for equations and their discretizations using Lipschitz and center Lipschitz conditions, Pan”, Amer. Math. J., Vol. 14(1), (2004), pp. 69–82. Zbl1057.65027
- [3] I.K. Argyros: “A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space”, J. Math. Anal. Appl., Vol. 298(2), (2004), pp. 374–397. http://dx.doi.org/10.1016/j.jmaa.2004.04.008 Zbl1057.65029
- [4] I.K. Argyros: Newton Methods, Nova Science Publ. Corp., New York, 2005.
- [5] L.V. Kantorovich and G.P. Akilov: Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.
- [6] M. Laumen: “Newton’s mesh independence principle for a class of optimal design problems”, SIAM J. Control Optim., Vol. 37(4), (1999), pp. 1070–1088. http://dx.doi.org/10.1137/S0363012996303529 Zbl0931.65068
- [7] W.C. Rheinboldt: “An adaptive continuation process for solving systems of nonlinear equations”, In: Mathematical models and Numerical Methods, Banach Center Publ., Vol. 3, PWN, Warsaw, 1978, 129–142.