Uniformly bounded composition operators in the banach space of bounded (p, k)-variation in the sense of Riesz-Popoviciu

Francy Armao; Dorota Głazowska; Sergio Rivas; Jessica Rojas

Open Mathematics (2013)

  • Volume: 11, Issue: 2, page 357-367
  • ISSN: 2391-5455

Abstract

top
We prove that if the composition operator F generated by a function f: [a, b] × ℝ → ℝ maps the space of bounded (p, k)-variation in the sense of Riesz-Popoviciu, p ≥ 1, k an integer, denoted by RV(p,k)[a, b], into itself and is uniformly bounded then RV(p,k)[a, b] satisfies the Matkowski condition.

How to cite

top

Francy Armao, et al. "Uniformly bounded composition operators in the banach space of bounded (p, k)-variation in the sense of Riesz-Popoviciu." Open Mathematics 11.2 (2013): 357-367. <http://eudml.org/doc/269335>.

@article{FrancyArmao2013,
abstract = {We prove that if the composition operator F generated by a function f: [a, b] × ℝ → ℝ maps the space of bounded (p, k)-variation in the sense of Riesz-Popoviciu, p ≥ 1, k an integer, denoted by RV(p,k)[a, b], into itself and is uniformly bounded then RV(p,k)[a, b] satisfies the Matkowski condition.},
author = {Francy Armao, Dorota Głazowska, Sergio Rivas, Jessica Rojas},
journal = {Open Mathematics},
keywords = {Nemytskij (composition; superposition) operator; Uniformly bounded mapping; Uniformly continuous mapping; de la Vallée Poussin second-variation; Popoviciu k-th variation; uniformly bounded mapping; uniformly continuous mapping; Popoviciu -th variation},
language = {eng},
number = {2},
pages = {357-367},
title = {Uniformly bounded composition operators in the banach space of bounded (p, k)-variation in the sense of Riesz-Popoviciu},
url = {http://eudml.org/doc/269335},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Francy Armao
AU - Dorota Głazowska
AU - Sergio Rivas
AU - Jessica Rojas
TI - Uniformly bounded composition operators in the banach space of bounded (p, k)-variation in the sense of Riesz-Popoviciu
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 357
EP - 367
AB - We prove that if the composition operator F generated by a function f: [a, b] × ℝ → ℝ maps the space of bounded (p, k)-variation in the sense of Riesz-Popoviciu, p ≥ 1, k an integer, denoted by RV(p,k)[a, b], into itself and is uniformly bounded then RV(p,k)[a, b] satisfies the Matkowski condition.
LA - eng
KW - Nemytskij (composition; superposition) operator; Uniformly bounded mapping; Uniformly continuous mapping; de la Vallée Poussin second-variation; Popoviciu k-th variation; uniformly bounded mapping; uniformly continuous mapping; Popoviciu -th variation
UR - http://eudml.org/doc/269335
ER -

References

top
  1. [1] Acosta A., Aziz W., Matkowski J., Merentes N., Uniformly continuous composition operator in the space of φ-variation functions in the sense of Riesz, Fasc. Math., 2010, 43, 5–11 Zbl1196.26015
  2. [2] Appell J., Guanda N., Väth M., Function spaces with the Matkowski property and degeneracy phenomena for composition operators, Fixed Point Theory, 2011, 12(2), 265–284 Zbl1253.47038
  3. [3] Aziz W., Azocar A., Guerrero J., Merentes N., Uniformly continuous composition operators in the space of functions of φ-variation with weight in the sense of Riesz, Nonlinear Anal., 2011, 74(2), 573–576 http://dx.doi.org/10.1016/j.na.2010.09.010 Zbl1204.26014
  4. [4] Aziz W., Giménez J., Merentes N., Sánchez J.L., Uniformly continuous set-valued composition operators in the space of total φ-bidimensional variation in the sense of Riesz, Opuscula Math., 2010, 30(3), 241–248 Zbl1229.47087
  5. [5] Aziz W., Guerrero J.A., Merentes N., Uniformly continuous set-valued composition operators in the spaces of functions of bounded variation in the sense of Riesz, Bull. Pol. Acad. Sci. Math., 2010, 58(1), 39–45 http://dx.doi.org/10.4064/ba58-1-5 Zbl1202.47027
  6. [6] Azócar A., Guerrero J.A., Matkowski J., Merentes N., Uniformly continuous set-valued composition operators in the space of functions of bounded variation in the sense of Wiener, Opuscula Math., 2010, 30(1), 53–60 Zbl1216.47090
  7. [7] Chistyakov V.V., Lipschitzian superposition operators between spaces of functions of bounded generalized variation with weight, J. Appl. Anal., 2000, 6(2), 173–186 http://dx.doi.org/10.1515/JAA.2000.173 Zbl0997.47051
  8. [8] Chistyakov V.V., On mapping of finite generalized variation and nonlinear operators, In: Report on the Summer Symposium in Real Analysis XXIV, Denton, May 23–27, 2000, Real Anal. Exchange, Summer Symposium 2000, suppl., Michigan State University Press, East Lansing, 2000, 39–43 
  9. [9] Chistyakov V.V., Generalized variation of mappings with applications to composition operators and multifunctions, Positivity, 2001, 5(4), 323–358 http://dx.doi.org/10.1023/A:1011879221347 Zbl1027.47046
  10. [10] Chistyakov V.V., The algebra of functions of two variables with finite variation and Lipschitzian superposition, In: Proceedings of the 12th Baikal International Conference “Optimization Methods and their Applications”, Irkutsk, June 24–July 1, 2001, 53–58 (in Russian) 
  11. [11] Chistyakov V.V., Superposition operators in the algebra of functions of two variables with finite total variation, Monatsh. Math., 2002, 137(2), 99–114 http://dx.doi.org/10.1007/s006050200048 Zbl1033.26019
  12. [12] Chistyakov V.V., Solycheva O. M., Lipschitzian operators of substitution in the Algebra ΛBV, J. Difference Equ. Appl., 2003, 9(3–4), 407–416 http://dx.doi.org/10.1080/1023619021000047824 
  13. [13] Guerrero J.A., Leiva H., Matkowski J., Merentes N., Uniformly continuous composition operators in the space of bounded φ-variation functions, Nonlinear Anal., 2010, 72(6), 3119–3123 http://dx.doi.org/10.1016/j.na.2009.11.051 Zbl1225.47078
  14. [14] Guerrero J.A., Matkowski J., Merentes N., Uniformly continuous composition operators in the space of functions of two variables of bounded φ-variation in the sense of Wiener, Comment. Math., 2010, 50(1), 41–48 Zbl1229.47088
  15. [15] Knop J., On globally Lipschitzian Nemytskiĭ operator in a special Banach space of functions, Fasc. Math., 1990, 21, 79–85 Zbl0728.39005
  16. [16] Krasnosel’skiĭ M.A., Pokrovskiĭ A.V., Systems with Hysteresis, Springer, Berlin-New York, 1989 http://dx.doi.org/10.1007/978-3-642-61302-9 
  17. [17] Kuczma M., Functional Equations in a Single Variable, Monogr. Mat., 46, PWN, Warsaw, 1968 
  18. [18] Kuczma M., An Introduction to the Theory of Functional Equations and Inequalities, Prace Nauk. Uniw. Slask. Katowic., 489, PWN, Warsaw, 1985 
  19. [19] Lichawski K., Matkowski J., Mis J., Locally defined operators in the space of differentiable functions, Bull. Polish Acad. Sci. Math., 1989, 37(1–6), 315–325 Zbl0762.26015
  20. [20] Lupa M., Form of Lipschitzian operator of substitution in some class of functions, Zeszyty Nauk. Politech. Łódz. Mat., 1989, 21, 87–96 
  21. [21] Matkowska A., On characterization of Lipschitzian operators of substitution in the class of Hölder’s functions, Zeszyty Nauk. Politech. Łódz. Mat., 1984, 17, 81–85 Zbl0599.46032
  22. [22] Matkowska A., Matkowski J., Merentes N., Remark on globally Lipschitzian composition operators, Demonstratio Math., 1995, 28(1), 171–175 Zbl0842.47042
  23. [23] Matkowski J., Uniformly continuous superposition operators in the Banach spaces Hölder functions, J. Math. Anal. Appl., 2009, 359(1), 56–61 http://dx.doi.org/10.1016/j.jmaa.2009.05.020 Zbl1173.47043
  24. [24] Matkowski J., Uniformly bounded composition operators between general Lipschitz function normed spaces, Topol. Methods Nonlinear Anal., 2011, 38(2), 395–406 Zbl1272.47070
  25. [25] Matkowski J., Merentes N., Characterization of globally Lipschitzian composition operators in the Banach space BV p2[a, b], Arch. Math. (Brno), 1992, 28(3–4), 181–186 Zbl0785.47033
  26. [26] Matkowski J., Merentes N., Characterization of globally Lipschitzian composition operators in the Sobolev space W p n [a, b], Zeszyty Nauk. Politech. Łódz. Mat., 1993, 24, 91–99 
  27. [27] Matkowski J., Miś J., On a characterization of Lipschitzian operators of substitution in the space BV〈a; b〉, Math. Nachr., 1984, 117, 155–159 http://dx.doi.org/10.1002/mana.3211170111 Zbl0566.47033
  28. [28] Matkowski J., Wróbel M., Locally defined operators in the space of Whitney differentiable functions, Nonlinear Anal., 2008, 68, 2933–2942 http://dx.doi.org/10.1016/j.na.2007.02.037 Zbl1153.47048
  29. [29] Matkowski J., Wróbel M., Representation theorem for locally defined operators in the space of Whitney differentiable functions, Manuscripta Math., 2009, 129(4), 437–448 http://dx.doi.org/10.1007/s00229-009-0283-2 Zbl1173.47044
  30. [30] Matkowski J., Wróbel M., The bounded local operators in the Banach space of Hölder functions, Pr. Nauk. Akad. Jana Długosza Czest. Mat., 2010, 15, 91–98 
  31. [31] Merentes N., On a characterization of Lipschitzian operators of substitution in the space of bounded Riesz φ-variation, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1991, 34, 139–144 Zbl0808.47050
  32. [32] Merentes N., On the composition operator in RVϕ[a, b], Collect. Math., 1995, 46(3), 231–238 
  33. [33] Merentes N., Rivas S., On characterization of the Lipschitzian composition operator between spaces of functions of bounded p-variation, Czechoslovak Math. J., 1995, 45(120)(4), 627–637 Zbl0856.47042
  34. [34] Merentes N., Rivas S., Sanchez J.L., On functions of bounded (p, k)-variation, J. Funct. Spaces Appl., 2012, #202987 Zbl1241.26007
  35. [35] Popoviciu T., Sur les Fonctions Convexes d’une Fonctions d’une Variable Réelle, DSc thesis, Paris, 1933 
  36. [36] Riesz F., Untersuchungen über Systeme integrierbarer Funktionen, Math. Ann., 1910, 69, 449–497 http://dx.doi.org/10.1007/BF01457637 Zbl41.0383.01
  37. [37] Russell A.M., Functions of bounded kth variation, Proc. London Math. Soc., 1973, 26, 547–563 http://dx.doi.org/10.1112/plms/s3-26.3.547 Zbl0254.26017
  38. [38] Russell A.M., A Banach space of functions of generalized variation, Bull. Aust. Math. Soc., 1976, 15(3), 431–438 http://dx.doi.org/10.1017/S0004972700022863 Zbl0333.46025
  39. [39] Sieczko A., Characterization of globally Lipschitzian Nemytskiĭ operator in the Banach space ACr−1, Math. Nachr., 1989, 141, 7–11 http://dx.doi.org/10.1002/mana.19891410102 Zbl0679.47038
  40. [40] Sharkovsky A.N., Maĭstrenko Yu.L., Romanenko E.Yu., Difference Equations and their Applications, Math. Appl., 250, Kluwer, Dordrecht, 1993 
  41. [41] de la Vallée Poussin Ch.J., Sur la convergence des formules d’interpolation entre ordennées équidistantes, Bull. Acad. R. Belg. Cl. Sci., 1908, 314–410 Zbl39.0331.01
  42. [42] Wróbel M., On functions of bounded n-th variation, Ann. Math. Sil., 2001, 15, 79–86 Zbl1085.26004
  43. [43] Wróbel M., Lichawski-Matkowski-Mis theorem of locally defined operators for functions of several variables, Ann. Acad. Pedagog. Crac. Stud. Math., 2008, 7, 15–22 Zbl1182.47045
  44. [44] Wróbel M., Locally defined operators and a partial solution of a conjecture, Nonlinear Anal., 2010, 72(1), 495–506 http://dx.doi.org/10.1016/j.na.2009.06.093 Zbl1225.47079
  45. [45] Wróbel M., Representation theorem for local operators in the space of continuous and monotone functions, J. Math. Anal. Appl., 2010, 372(1), 45–54 http://dx.doi.org/10.1016/j.jmaa.2010.06.013 Zbl1208.47052
  46. [46] Wróbel M., Locally defined operators in Hölder’s spaces, Nonlinear Anal., 2011, 74(1), 317–323 http://dx.doi.org/10.1016/j.na.2010.08.046 Zbl1266.47083
  47. [47] Wróbel M., Uniformly bounded Nemytskij operators between the Banach spaces of functions of bounded n-th variation, J. Math. Anal. Appl., 2012, 391(2), 451–456 http://dx.doi.org/10.1016/j.jmaa.2012.02.053 Zbl1321.47124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.