Characterization of globally Lipschitzian composition operators in the Banach space BV p 2 [ a , b ]

Janusz Matkowski; Nelson Merentes

Archivum Mathematicum (1992)

  • Volume: 028, Issue: 3-4, page 181-186
  • ISSN: 0044-8753

Abstract

top
We give a characterization of the globally Lipschitzian composition operators acting in the space B V p 2 [ a , b ]

How to cite

top

Matkowski, Janusz, and Merentes, Nelson. "Characterization of globally Lipschitzian composition operators in the Banach space ${\rm BV}_p^2[a,b]$." Archivum Mathematicum 028.3-4 (1992): 181-186. <http://eudml.org/doc/247327>.

@article{Matkowski1992,
abstract = {We give a characterization of the globally Lipschitzian composition operators acting in the space $BV_p^2[a,b]$},
author = {Matkowski, Janusz, Merentes, Nelson},
journal = {Archivum Mathematicum},
keywords = {Riesz space; bounded p-variation; globally Lipschitzian composition operator; superposition opertor; global Lipschitz condition},
language = {eng},
number = {3-4},
pages = {181-186},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Characterization of globally Lipschitzian composition operators in the Banach space $\{\rm BV\}_p^2[a,b]$},
url = {http://eudml.org/doc/247327},
volume = {028},
year = {1992},
}

TY - JOUR
AU - Matkowski, Janusz
AU - Merentes, Nelson
TI - Characterization of globally Lipschitzian composition operators in the Banach space ${\rm BV}_p^2[a,b]$
JO - Archivum Mathematicum
PY - 1992
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 028
IS - 3-4
SP - 181
EP - 186
AB - We give a characterization of the globally Lipschitzian composition operators acting in the space $BV_p^2[a,b]$
LA - eng
KW - Riesz space; bounded p-variation; globally Lipschitzian composition operator; superposition opertor; global Lipschitz condition
UR - http://eudml.org/doc/247327
ER -

References

top
  1. On globally Lipschitzian operator in the space Lip C r [ a , b ] , Fasculi Math. 21 (1990), 79-85. (1990) MR1115522
  2. On characterization of Lipschitzian operators of substitution in the class of Hölder’s function, Zeszyty Naukowe Politechniki Lodzkiej, Matematyka. Z. 17 (1984), 81-85. (1984) MR0790842
  3. Functional Equations and Nemyskij operators, Funkcialaj Ekvacioj 25 (1982), 127-132. (1982) MR0694906
  4. Form of Lipschitzian operator of substitution in Banach space of differentiable functios, Zeszyty Naukowe Politechniki-Lódzkiej, Matematyka. Z. 17 (1984), 5-10. (1984) MR0790835
  5. On a characterization of Lipschitzian operators of substitution in the space B V [ a , b ] , Math. Nach. 117 (1984), 155-159. (1984) MR0755299
  6. On a characterization of Lipschitzian operators of substitution in the space of bounded Riesz ϕ -variation, Ann. Univ. Sci. Budapest. Sect. Math. (to appear). Zbl0808.47050MR1161510
  7. On the concept of bounded ( p , 2 ) -variation of a function, Rend. Sem. Mat. Univ. Padova (submitted). 
  8. Untersuchungen über systeme intergrierbarer functionen, Mathematische Annalen 69 (1910), 1449-1497. (1910) 
  9. Convex functions, Academic Press, New York and London, 1973. MR0442824
  10. Sur la convergence des formules d’interpolation entre ordinées equidistances, Bull. Acad. Sci. Belg. (1908), 319-410. (1908) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.