Stable cohomology of alternating groups

Fedor Bogomolov; Christian Böhning

Open Mathematics (2014)

  • Volume: 12, Issue: 2, page 212-228
  • ISSN: 2391-5455

Abstract

top
We determine the stable cohomology groups ( of the alternating groups for all integers n and i, and all odd primes p.

How to cite

top

Fedor Bogomolov, and Christian Böhning. "Stable cohomology of alternating groups." Open Mathematics 12.2 (2014): 212-228. <http://eudml.org/doc/269336>.

@article{FedorBogomolov2014,
abstract = {We determine the stable cohomology groups (\[H\_S^i \left( \{\{\{\mathfrak \{A\}\_n ,\mathbb \{Z\}\} \mathord \{\left\bad. \{\vphantom\{\{\mathfrak \{A\}\_n ,\mathbb \{Z\}\} \{p\mathbb \{Z\}\}\}\} \right. \hspace\{0.0pt\}\} \{p\mathbb \{Z\}\}\}\} \right)\] of the alternating groups \[\mathfrak \{A\}\_n\] for all integers n and i, and all odd primes p.},
author = {Fedor Bogomolov, Christian Böhning},
journal = {Open Mathematics},
keywords = {Stable cohomology; Alternating groups; Cohomological invariants; stable cohomology; alternating groups; cohomological invariants},
language = {eng},
number = {2},
pages = {212-228},
title = {Stable cohomology of alternating groups},
url = {http://eudml.org/doc/269336},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Fedor Bogomolov
AU - Christian Böhning
TI - Stable cohomology of alternating groups
JO - Open Mathematics
PY - 2014
VL - 12
IS - 2
SP - 212
EP - 228
AB - We determine the stable cohomology groups (\[H_S^i \left( {{{\mathfrak {A}_n ,\mathbb {Z}} \mathord {\left\bad. {\vphantom{{\mathfrak {A}_n ,\mathbb {Z}} {p\mathbb {Z}}}} \right. \hspace{0.0pt}} {p\mathbb {Z}}}} \right)\] of the alternating groups \[\mathfrak {A}_n\] for all integers n and i, and all odd primes p.
LA - eng
KW - Stable cohomology; Alternating groups; Cohomological invariants; stable cohomology; alternating groups; cohomological invariants
UR - http://eudml.org/doc/269336
ER -

References

top
  1. [1] Adem A., Milgram R.J., Cohomology of Finite Groups, 2nd ed., Grundlehren Math. Wiss., 309, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-662-06280-7 Zbl1061.20044
  2. [2] Bogomolov F.A., Stable cohomology of groups and algebraic varieties, Russian Acad. Sci. Sb. Math., 1993, 76(1), 1–21 http://dx.doi.org/10.1070/SM1993v076n01ABEH003398 Zbl0789.14022
  3. [3] Bogomolov F., Stable cohomology of finite and profinite groups, In: Algebraic Groups, Göttingen, June 27–July 13, 2005, Universitätsverlag Göttingen, Göttingen, 2007, 19–49 
  4. [4] Bogomolov F., Böhning Chr., Isoclinism and stable cohomology of wreath products, In: Birational Geometry, Rational Curves, and Arithmetic, Simons Symposium ”Geometry Over Non-Closed Fields”, St. John, February 26–March 3, 2012, Springer, New York, 2013, 57–76 
  5. [5] Bogomolov F., Petrov T., Unramified cohomology of alternating groups, Cent. Eur. J. Math., 2011, 9(5), 936–948 http://dx.doi.org/10.2478/s11533-011-0061-8 Zbl1236.20054
  6. [6] Bogomolov F., Petrov T., Tschinkel Yu., Unramified cohomology of finite groups of Lie type, In: Cohomological and Geometric Approaches to Rationality Problems, Progr. Math., 282, Birkhäuser, Boston, 2010, 55–73 http://dx.doi.org/10.1007/978-0-8176-4934-0_3 
  7. [7] Colliot-Thélène J.-L., Birational invariants, purity and the Gersten conjecture, In: K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Santa Barbara, July 6–24, 1992, Proc. Sympos. Pure Math., 58(1), American Mathematical Society, Providence, 1995, 1–64 Zbl0834.14009
  8. [8] Colliot-Thélène J.-L., Ojanguren M., Variétés unirationelles non rationelles: au-delà de l’exemple d’Artin et Mumford, Invent. Math., 1989, 97(1), 141–158 http://dx.doi.org/10.1007/BF01850658 Zbl0686.14050
  9. [9] Garibaldi S., Merkurjev A., Serre J.-P., Cohomological invariants in Galois cohomology, Univ. Lecture Ser., 28, American Mathematical Society, Providence, 2003 Zbl1159.12311
  10. [10] Kahn B., Relatively unramified elements in cycle modules, J. K-Theory, 2011, 7(3), 409–427 http://dx.doi.org/10.1017/is011003002jkt147 Zbl1235.14008
  11. [11] Kahn B., Sujatha R., Motivic cohomology and unramified cohomology of quadrics, J. Eur. Math. Soc. (JEMS), 2000, 2(2), 145–177 http://dx.doi.org/10.1007/s100970000015 
  12. [12] Mann B.M., The cohomology of the alternating groups, Michigan Math. J., 1985, 32(3), 267–277 http://dx.doi.org/10.1307/mmj/1029003238 Zbl0604.20053
  13. [13] Mùi H., Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1975, 22(3), 319–369 Zbl0335.18010
  14. [14] Nguyen T.K.N., Modules de Cycles et Classes Non Ramifiées sur un Espace Classifiant, PhD thesis, Université Paris Diderot, 2010 
  15. [15] Nguyen T.K.N., Classes non ramifiées sur un espace classifiant, C. R. Math. Acad. Sci. Paris, 2011, 349(5–6), 233–237 http://dx.doi.org/10.1016/j.crma.2011.02.012 
  16. [16] Ore O., Theory of monomial groups, Trans. Amer. Math. Soc., 1942, 51(1), 15–64 http://dx.doi.org/10.2307/1989979 
  17. [17] Serre J.-P., Galois Cohomology, Springer Monogr. Math., Springer, Berlin, 2002 
  18. [18] Steenrod N.E., Cohomology Operations, Ann. of Math. Stud., 50, Princeton University Press, Princeton, 1962 
  19. [19] Tezuka M., Yagita N., The image of the map from group cohomology to Galois cohomology, Trans. Amer. Math. Soc., 2011, 363(8), 4475–4503 http://dx.doi.org/10.1090/S0002-9947-2011-05418-8 Zbl1310.11044

NotesEmbed ?

top

You must be logged in to post comments.