# A-monotone nonlinear relaxed cocoercive variational inclusions

Open Mathematics (2007)

- Volume: 5, Issue: 2, page 386-396
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topRam Verma. "A-monotone nonlinear relaxed cocoercive variational inclusions." Open Mathematics 5.2 (2007): 386-396. <http://eudml.org/doc/269339>.

@article{RamVerma2007,

abstract = {Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.},

author = {Ram Verma},

journal = {Open Mathematics},

keywords = {Nonlinear variational inclusion problem; maximal monotone mapping; A - monotone mapping; H - monotone mapping; generalized resolvent operator; nonlinear variational inclusion problem; -monotone mapping; -monotone mapping},

language = {eng},

number = {2},

pages = {386-396},

title = {A-monotone nonlinear relaxed cocoercive variational inclusions},

url = {http://eudml.org/doc/269339},

volume = {5},

year = {2007},

}

TY - JOUR

AU - Ram Verma

TI - A-monotone nonlinear relaxed cocoercive variational inclusions

JO - Open Mathematics

PY - 2007

VL - 5

IS - 2

SP - 386

EP - 396

AB - Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.

LA - eng

KW - Nonlinear variational inclusion problem; maximal monotone mapping; A - monotone mapping; H - monotone mapping; generalized resolvent operator; nonlinear variational inclusion problem; -monotone mapping; -monotone mapping

UR - http://eudml.org/doc/269339

ER -

## References

top- [1] R.P. Agarwal, Y.J. Cho and and N.J. Huang: “Sensitivity Analysis for Strongly Nonlinear Quasi-Variational Inclusions”, Appl. Math. Lett., Vol. 13, (2000), pp. 19–24. http://dx.doi.org/10.1016/S0893-9659(00)00048-3 Zbl0960.47035
- [2] R.L. Tobin: “Sensitivity Analysis for Variational Inequalities”, J. Optimization Theory Appl., Vol. 48, (1986), pp. 191–204. Zbl0557.49004
- [3] Y.P. Fang and N.J. Huang: “H - Monotone Operator and Resolvent Operator Technique for Variational Inclusions”, Appl. Math. Comput., Vol. 145, (2003), pp. 795–803. http://dx.doi.org/10.1016/S0096-3003(03)00275-3 Zbl1030.49008
- [4] Y.P. Fang and N.J. Huang: “H - Monotone Operators and System of Variational Inclusions”, Commun. Appl. Nonlinear Anal., Vol. 11, (2004), pp. 93–101. Zbl1040.49007
- [5] Z. Liu, J.S. Ume and S.M. Kang: “H - Monotone Operator and Resolvent Operator Technique for Nonlinear Variational Inclusions”, Math. Inequal. Appl., to appear.
- [6] R.U. Verma: “A-Monotonicity and Applications to Nonlinear Variational Inclusion Problems”, J. Appl. Math. Stochastic Anal., Vol. 17, (2004), pp. 193–195. http://dx.doi.org/10.1155/S1048953304403013 Zbl1064.49012
- [7] R.U. Verma: “Approximation-Solvability of a Class of A-Monotone Variational Inclusion Problems“, J. Optimization Theory Appl., Vol. 100, (1999), pp. 195–205. http://dx.doi.org/10.1023/A:1021777217261
- [8] N.J. Huang and Y.P. Fang: “Auxiliary Principle Technique for Solving Generalized Set-Valued Nonlinear Quasi-Variational-Like Inequalities”, Math. Inequal. Appl., Vol. 6, (2003), pp. 339–350. Zbl1031.49015
- [9] H. Iiduka and W. Takahashi: “Strong Convergence Theorem by a Hybrid Method for Nonlinear Mappings of Nonexpansive and Monotone Type and Applications”, Adv. Nonlinear Var. Inequal., Vol. 9, (2006), pp. 1–9. Zbl1090.49011
- [10] J. Kyparisis: “Sensitivity Analysis Framework for Variational Inequalities”, Math. Program., Vol. 38, (1987), pp. 203–213.
- [11] A. Moudafi: “Mixed Equilibrium Problems: Sensitivity Analysis and Algorithmic Aspect”, Comput. Math. Appl., Vol. 44, (2002), pp. 1099–1108. http://dx.doi.org/10.1016/S0898-1221(02)00218-3 Zbl1103.49301
- [12] R.U. Verma: “Nonlinear Variational and Constrained Hemivariational Inequalities Involving Relaxed Operators”, ZAMM: Z. Angew. Math. Mech., Vol. 77, (1997), pp. 387–391. Zbl0886.49006
- [13] R.U. Verma: “Generalized System for Relaxed Cocoercive Variational Inequalities and Projection Methods”, J. Optimization Theory Appl., Vol. 121, (2004), pp. 203–210. http://dx.doi.org/10.1023/B:JOTA.0000026271.19947.05
- [14] R.U. Verma: “Generalized Partial Relaxed Monotonicity and Nonlinear Variational Inequalities”, Int. J. Appl. Math., Vol. 9, (2002), pp. 355–363. Zbl1025.49008
- [15] W.Y. Yan, Y.P. Fang and N.J. Huang: “A New System of Set-Valued Variational Inclusions with H-Monotone Operators”, Math. Inequal. Appl., Vol. 8, (2005), pp. 537–546. Zbl1070.49007
- [16] R. Wittmann: “Approximation of Fixed Points of Nonexpansive Mappings”, Archiv der Mathematik, Vol. 58, 1992, pp. 486–491. http://dx.doi.org/10.1007/BF01190119 Zbl0797.47036
- [17] E. Zeidler: Nonlinear Functional Analysis and its Applications, Vol. II/A, Springer-Verlag, New York, NY, 1985. Zbl0583.47051
- [18] E. Zeidler: Nonlinear Functional Analysis and its Applications, Vol. II/B, Springer-Verlag, New York, NY, 1990. Zbl0684.47029

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.