Instanton bundles on Fano threefolds

Alexander Kuznetsov

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1198-1231
  • ISSN: 2391-5455

Abstract

top
We introduce the notion of an instanton bundle on a Fano threefold of index 2. For such bundles we give an analogue of a monadic description and discuss the curve of jumping lines. The cases of threefolds of degree 5 and 4 are considered in a greater detail.

How to cite

top

Alexander Kuznetsov. "Instanton bundles on Fano threefolds." Open Mathematics 10.4 (2012): 1198-1231. <http://eudml.org/doc/269345>.

@article{AlexanderKuznetsov2012,
abstract = {We introduce the notion of an instanton bundle on a Fano threefold of index 2. For such bundles we give an analogue of a monadic description and discuss the curve of jumping lines. The cases of threefolds of degree 5 and 4 are considered in a greater detail.},
author = {Alexander Kuznetsov},
journal = {Open Mathematics},
keywords = {Instanton bundle; Fano threefold; instanton bundle; monads; derived category},
language = {eng},
number = {4},
pages = {1198-1231},
title = {Instanton bundles on Fano threefolds},
url = {http://eudml.org/doc/269345},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Alexander Kuznetsov
TI - Instanton bundles on Fano threefolds
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1198
EP - 1231
AB - We introduce the notion of an instanton bundle on a Fano threefold of index 2. For such bundles we give an analogue of a monadic description and discuss the curve of jumping lines. The cases of threefolds of degree 5 and 4 are considered in a greater detail.
LA - eng
KW - Instanton bundle; Fano threefold; instanton bundle; monads; derived category
UR - http://eudml.org/doc/269345
ER -

References

top
  1. [1] Atiyah M.F., Hitchin N.J., Drinfel’d V.G., Manin Yu.I., Construction of instantons, Phys. Lett. A, 1978, 65, 185–187 http://dx.doi.org/10.1016/0375-9601(78)90141-X 
  2. [2] Bernardara M., Macrì E., Mehrotra S., Stellari P., A categorical invariant for cubic threefolds, Adv. Math., 2012, 229(2), 770–803 http://dx.doi.org/10.1016/j.aim.2011.10.007 Zbl1242.14012
  3. [3] Bondal A.I., Representations of associative algebras and coherent sheaves, Math. USSR-Izv., 1990, 34(1), 23–42 http://dx.doi.org/10.1070/IM1990v034n01ABEH000583 Zbl0692.18002
  4. [4] Bondal A.I., Kapranov M.M., Math. USSR-Izv., 1990, 35(3), 519–541 http://dx.doi.org/10.1070/IM1990v035n03ABEH000716 
  5. [5] Bondal A., Orlov D., Semiorthogonal decomposition for algebraic varieties, preprint available at http://arxiv.org/abs/alg-geom/9506012 
  6. [6] Bondal A., Orlov D., Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math., 2011, 125(3), 327–344 http://dx.doi.org/10.1023/A:1002470302976 Zbl0994.18007
  7. [7] Faenzi D., Even and odd instanton bundles on Fano threefolds of Picard number one, preprint available at http://arxiv.org/abs/1109.3858 
  8. [8] Fujita T., On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ Tokyo. Sec. IA Math., 1975, 22, 103–115 Zbl0333.14004
  9. [9] Hoppe H.J., Generischer Spaltungstyp und zweite Chernklasse stabiler Vektorraumbündel vom Rang 4 auf ℙ4, Math. Z., 1984, 187(3), 345–360 http://dx.doi.org/10.1007/BF01161952 Zbl0567.14011
  10. [10] Ingalls C., Kuznetsov A., On nodal Enriques surfaces and quartic double solids, preprint available at http://arxiv.org/abs/1012.3530 Zbl06399403
  11. [11] Iskovskikh V.A., Prokhorov Yu.G., Fano Varieties, Algebraic Geometry, 5, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999 
  12. [12] Kapustin A., Kuznetsov A., Orlov D., Noncommutative instantons and twistor transform, Comm. Math. Phys., 2001, 221(2), 385–432 http://dx.doi.org/10.1007/PL00005576 Zbl0989.81127
  13. [13] Kuznetsov A., Derived category of a cubic threefold and the variety V 14, Proc. Steklov Inst. Math., 2004, 246(3), 171–194 
  14. [14] Kuznetsov A., Derived categories of quadric fibrations and intersections of quadrics, Adv. Math., 2008, 218(5), 1340–1369 http://dx.doi.org/10.1016/j.aim.2008.03.007 Zbl1168.14012
  15. [15] Kuznetsov A.G., Derived categories of Fano threefolds, Proc. Steklov Inst. Math, 2009, 264(1), 110–122 http://dx.doi.org/10.1134/S0081543809010143 Zbl1312.14055
  16. [16] Markushevich D., Tikhomirov A., The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom., 2001, 10(1), 37–62 Zbl0987.14028
  17. [17] Mukai S., Duality between D(X) and D X ^ with its application to Picard sheaves, Nagoya Math. J., 1981, 81, 153–175 
  18. [18] Okonek C., Schneider M., Spindler H., Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhaüser, Boston, 1980 http://dx.doi.org/10.1007/978-3-0348-0151-5 Zbl0438.32016
  19. [19] Okonek C., Spindler H., Mathematical instanton bundles on ℙ2n+1, J. Reine Angew. Math., 1986, 364, 35–50 Zbl0568.14009
  20. [20] Orlov D., Exceptional set of vector bundles on the variety V 5, Moscow Univ. Math. Bull., 1991, 46(5), 48–50 
  21. [21] Orlov D., Derived categories of coherent sheaves and triangulated categories of singularities, In: Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, 2, Progr. Math., 270, Birkhaüser, Boston, 2009, 503–531 Zbl1200.18007
  22. [22] Popa M., Generalized theta linear series on moduli spaces of vector bundles on curves, In: Handbook of Moduli (in press) Zbl1322.14015
  23. [23] Raynaud M., Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France, 1982, 110(1), 103–125 Zbl0505.14011
  24. [24] Spindler H., Trautmann G., Special instanton bundles on ℙ2N+1, their geometry and their moduli, Math. Ann., 1990, 286(1–3), 559–592 http://dx.doi.org/10.1007/BF01453589 Zbl0752.14014
  25. [25] Wall C.T.C., Nets of quadrics, and theta-characteristics of singular curves, Philos. Trans. Roy. Soc. London Ser. A, 1978, 289(1357), 229–269 http://dx.doi.org/10.1098/rsta.1978.0060 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.