Milnor fibration at infinity for mixed polynomials

Ying Chen

Open Mathematics (2014)

  • Volume: 12, Issue: 1, page 28-38
  • ISSN: 2391-5455

Abstract

top
We study the existence of Milnor fibration on a big enough sphere at infinity for a mixed polynomial f: ℝ2n → ℝ2. By using strongly non-degenerate condition, we prove a counterpart of Némethi and Zaharia’s fibration theorem. In particular, we obtain a global version of Oka’s fibration theorem for strongly non-degenerate and convenient mixed polynomials.

How to cite

top

Ying Chen. "Milnor fibration at infinity for mixed polynomials." Open Mathematics 12.1 (2014): 28-38. <http://eudml.org/doc/269348>.

@article{YingChen2014,
abstract = {We study the existence of Milnor fibration on a big enough sphere at infinity for a mixed polynomial f: ℝ2n → ℝ2. By using strongly non-degenerate condition, we prove a counterpart of Némethi and Zaharia’s fibration theorem. In particular, we obtain a global version of Oka’s fibration theorem for strongly non-degenerate and convenient mixed polynomials.},
author = {Ying Chen},
journal = {Open Mathematics},
keywords = {Fibrations on spheres; Bifurcation locus; Newton polyhedron; Regularity at infinity; Mixed polynomials; Milnor fibration; mixed polynomials},
language = {eng},
number = {1},
pages = {28-38},
title = {Milnor fibration at infinity for mixed polynomials},
url = {http://eudml.org/doc/269348},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Ying Chen
TI - Milnor fibration at infinity for mixed polynomials
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 28
EP - 38
AB - We study the existence of Milnor fibration on a big enough sphere at infinity for a mixed polynomial f: ℝ2n → ℝ2. By using strongly non-degenerate condition, we prove a counterpart of Némethi and Zaharia’s fibration theorem. In particular, we obtain a global version of Oka’s fibration theorem for strongly non-degenerate and convenient mixed polynomials.
LA - eng
KW - Fibrations on spheres; Bifurcation locus; Newton polyhedron; Regularity at infinity; Mixed polynomials; Milnor fibration; mixed polynomials
UR - http://eudml.org/doc/269348
ER -

References

top
  1. [1] Araújo dos Santos R.N., Chen Y., Tibăr M., Singular open book structures from real mappings, Cent. Eur. J. Math., 2013, 11(5), 817–828 http://dx.doi.org/10.2478/s11533-013-0212-1 Zbl1276.32024
  2. [2] Bodin A., Milnor fibration and fibred links at infinity, Internat. Math. Res. Notices, 1999, 11, 615–621 http://dx.doi.org/10.1155/S1073792899000318 Zbl0941.32030
  3. [3] Broughton S.A., On the topology of polynomial hypersurfaces, In: Singularities, Part 1, Arcata, July 20–August 7, 1981, Proc. Sympos. Pure Math., 40, American Mathematical Society, Providence, 1983, 167–178 
  4. [4] Broughton S.A., Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 1988, 92(2), 217–241 http://dx.doi.org/10.1007/BF01404452 Zbl0658.32005
  5. [5] Chen Y., Bifurcation Values of Mixed Polynomials and Newton Polyhedra, PhD thesis, Université de Lille 1, Lille, 2012 
  6. [6] Chen Y., Tibăr M., Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., 2012, 19(1), 59–79 http://dx.doi.org/10.4310/MRL.2012.v19.n1.a6 Zbl1274.14006
  7. [7] Cisneros-Molina J.L., Join theorem for polar weighted homogeneous singularities, In: Singularities II, Cuernavaca, January 8–26, 2007, Contemp. Math., 475, American Mathematical Society, Providence, 2008, 43–59 Zbl1172.32008
  8. [8] Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 1976, 32(1), 1–31 http://dx.doi.org/10.1007/BF01389769 Zbl0328.32007
  9. [9] Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton University Press, 1968 Zbl0184.48405
  10. [10] Némethi A., Théorie de Lefschetz pour les variétés algébriques affines, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(12), 567–570 Zbl0612.14007
  11. [11] Némethi A., Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures Appl., 1988, 33(3), 233–250 Zbl0665.14003
  12. [12] Némethi A., Zaharia A., On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., 1990, 26(4), 681–689 http://dx.doi.org/10.2977/prims/1195170853 Zbl0736.32024
  13. [13] Némethi A., Zaharia A., Milnor fibration at infinity, Indag. Math. (N.S.), 1992, 3(3), 323–335 http://dx.doi.org/10.1016/0019-3577(92)90039-N Zbl0806.57021
  14. [14] Oka M., Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., 2008, 31(2), 163–182 http://dx.doi.org/10.2996/kmj/1214442793 
  15. [15] Oka M., Non-degenerate mixed functions, Kodai Math. J., 2010, 33(1), 1–62 http://dx.doi.org/10.2996/kmj/1270559157 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.