Jacobi-Bernoulli cohomology and deformations of schemes and maps

Ziv Ran

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1541-1591
  • ISSN: 2391-5455

Abstract

top
We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.

How to cite

top

Ziv Ran. "Jacobi-Bernoulli cohomology and deformations of schemes and maps." Open Mathematics 10.4 (2012): 1541-1591. <http://eudml.org/doc/269349>.

@article{ZivRan2012,
abstract = {We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.},
author = {Ziv Ran},
journal = {Open Mathematics},
keywords = {Deformations; Schemes; Lie algebras; Bernoulli numbers; Cohomology; deformations; semi simplicial Lie algebra; SELA; Jacobi-Bernoulli complex; Baker-Campbell-Hausdorff formula; BCH polynomial; normal algebra; normal atom; tangent atom; Ischebeck's theorem},
language = {eng},
number = {4},
pages = {1541-1591},
title = {Jacobi-Bernoulli cohomology and deformations of schemes and maps},
url = {http://eudml.org/doc/269349},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Ziv Ran
TI - Jacobi-Bernoulli cohomology and deformations of schemes and maps
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1541
EP - 1591
AB - We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.
LA - eng
KW - Deformations; Schemes; Lie algebras; Bernoulli numbers; Cohomology; deformations; semi simplicial Lie algebra; SELA; Jacobi-Bernoulli complex; Baker-Campbell-Hausdorff formula; BCH polynomial; normal algebra; normal atom; tangent atom; Ischebeck's theorem
UR - http://eudml.org/doc/269349
ER -

References

top
  1. [1] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math., 1982, 67(1), 23–88 http://dx.doi.org/10.1007/BF01393371 Zbl0506.14016
  2. [2] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, Berlin-New York-Heidelberg, 1977 
  3. [3] Ischebeck F., Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra, 1969, 11(4), 510–531 http://dx.doi.org/10.1016/0021-8693(69)90090-8 
  4. [4] Kodaira K., A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math., 1962, 75(1), 146–162 http://dx.doi.org/10.2307/1970424 Zbl0112.38404
  5. [5] Kodaira K., Complex Manifolds and Deformations of Complex Structures, Grundlehren Math. Wiss., 283, Springer, Berlin-New York, 1986 http://dx.doi.org/10.1007/978-1-4613-8590-5 
  6. [6] Lichtenbaum S., Schlessinger M., The cotangent complex of a morphism, Trans. Amer. Math. Soc., 1967, 128, 41–70 http://dx.doi.org/10.1090/S0002-9947-1967-0209339-1 Zbl0156.27201
  7. [7] Matsumura H., Commutative Algebra, 2nd ed., Math. Lecture Note Ser., 56, Benjamin/Cummings, Reading, 1980 
  8. [8] Merkulov S.A., Operad of formal homogeneous spaces and Bernoulli numbers, Algebra Number Theory, 2008, 2(4), 407–433 http://dx.doi.org/10.2140/ant.2008.2.407 Zbl1162.18003
  9. [9] Petracci E., Universal representations of Lie algebras by coderivations, Bull. Sci. Math., 2003, 127(5), 439–465 http://dx.doi.org/10.1016/S0007-4497(03)00041-1 Zbl1155.17302
  10. [10] Ran Z., Enumerative geometry of families of singular plane curves, Invent. Math., 1989, 97(3), 447–465 http://dx.doi.org/10.1007/BF01388886 Zbl0702.14040
  11. [11] Ran Z., Stability of certain holomorphic maps, J. Differential Geom., 1991, 34(1), 37–47 Zbl0755.32017
  12. [12] Ran Z., Canonical infinitesimal deformations, J. Algebraic Geom., 2000, 9(1), 43–69 Zbl1060.14016
  13. [13] Ran Z., Lie atoms and their deformations, Geom. Funct. Anal., 2008, 18(1), 184–221 http://dx.doi.org/10.1007/s00039-008-0655-x Zbl1142.14007
  14. [14] Sernesi E., Deformations of Algebraic Schemes, Grundlehren Math. Wiss., 334, Springer, Berlin, 2006 Zbl1102.14001
  15. [15] Varadarajan V.S., Lie Groups, Lie Algebras and their Representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, 1974 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.