Jacobi-Bernoulli cohomology and deformations of schemes and maps
Open Mathematics (2012)
- Volume: 10, Issue: 4, page 1541-1591
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topZiv Ran. "Jacobi-Bernoulli cohomology and deformations of schemes and maps." Open Mathematics 10.4 (2012): 1541-1591. <http://eudml.org/doc/269349>.
@article{ZivRan2012,
abstract = {We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.},
author = {Ziv Ran},
journal = {Open Mathematics},
keywords = {Deformations; Schemes; Lie algebras; Bernoulli numbers; Cohomology; deformations; semi simplicial Lie algebra; SELA; Jacobi-Bernoulli complex; Baker-Campbell-Hausdorff formula; BCH polynomial; normal algebra; normal atom; tangent atom; Ischebeck's theorem},
language = {eng},
number = {4},
pages = {1541-1591},
title = {Jacobi-Bernoulli cohomology and deformations of schemes and maps},
url = {http://eudml.org/doc/269349},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Ziv Ran
TI - Jacobi-Bernoulli cohomology and deformations of schemes and maps
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1541
EP - 1591
AB - We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.
LA - eng
KW - Deformations; Schemes; Lie algebras; Bernoulli numbers; Cohomology; deformations; semi simplicial Lie algebra; SELA; Jacobi-Bernoulli complex; Baker-Campbell-Hausdorff formula; BCH polynomial; normal algebra; normal atom; tangent atom; Ischebeck's theorem
UR - http://eudml.org/doc/269349
ER -
References
top- [1] Harris J., Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math., 1982, 67(1), 23–88 http://dx.doi.org/10.1007/BF01393371 Zbl0506.14016
- [2] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, Berlin-New York-Heidelberg, 1977
- [3] Ischebeck F., Eine Dualität zwischen den Funktoren Ext und Tor, J. Algebra, 1969, 11(4), 510–531 http://dx.doi.org/10.1016/0021-8693(69)90090-8
- [4] Kodaira K., A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math., 1962, 75(1), 146–162 http://dx.doi.org/10.2307/1970424 Zbl0112.38404
- [5] Kodaira K., Complex Manifolds and Deformations of Complex Structures, Grundlehren Math. Wiss., 283, Springer, Berlin-New York, 1986 http://dx.doi.org/10.1007/978-1-4613-8590-5
- [6] Lichtenbaum S., Schlessinger M., The cotangent complex of a morphism, Trans. Amer. Math. Soc., 1967, 128, 41–70 http://dx.doi.org/10.1090/S0002-9947-1967-0209339-1 Zbl0156.27201
- [7] Matsumura H., Commutative Algebra, 2nd ed., Math. Lecture Note Ser., 56, Benjamin/Cummings, Reading, 1980
- [8] Merkulov S.A., Operad of formal homogeneous spaces and Bernoulli numbers, Algebra Number Theory, 2008, 2(4), 407–433 http://dx.doi.org/10.2140/ant.2008.2.407 Zbl1162.18003
- [9] Petracci E., Universal representations of Lie algebras by coderivations, Bull. Sci. Math., 2003, 127(5), 439–465 http://dx.doi.org/10.1016/S0007-4497(03)00041-1 Zbl1155.17302
- [10] Ran Z., Enumerative geometry of families of singular plane curves, Invent. Math., 1989, 97(3), 447–465 http://dx.doi.org/10.1007/BF01388886 Zbl0702.14040
- [11] Ran Z., Stability of certain holomorphic maps, J. Differential Geom., 1991, 34(1), 37–47 Zbl0755.32017
- [12] Ran Z., Canonical infinitesimal deformations, J. Algebraic Geom., 2000, 9(1), 43–69 Zbl1060.14016
- [13] Ran Z., Lie atoms and their deformations, Geom. Funct. Anal., 2008, 18(1), 184–221 http://dx.doi.org/10.1007/s00039-008-0655-x Zbl1142.14007
- [14] Sernesi E., Deformations of Algebraic Schemes, Grundlehren Math. Wiss., 334, Springer, Berlin, 2006 Zbl1102.14001
- [15] Varadarajan V.S., Lie Groups, Lie Algebras and their Representations, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Englewood Cliffs, 1974
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.