Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Deformations of Lie brackets: cohomological aspects

Marius Crainic, Ieke Moerdijk (2008)

Journal of the European Mathematical Society

We introduce a new cohomology for Lie algebroids, and prove that it provides a differential graded Lie algebra which “controls” deformations of the structure bracket of the algebroid.

Infinitesimal automorphisms and deformations of parabolic geometries

Andreas Čap (2008)

Journal of the European Mathematical Society

We show that infinitesimal automorphisms and infinitesimal deformations of parabolic geometries can be nicely described in terms of the twisted de Rham sequence associated to a certain linear connection on the adjoint tractor bundle. For regular normal geometries, this description can be related to the underlying geometric structure using the machinery of BGG sequences. In the locally flat case, this leads to a deformation complex, which generalizes the well known complex for locally conformally...

Infinitesimal conjugacies and Weil-Petersson metric

Albert Fathi, L. Flaminio (1993)

Annales de l'institut Fourier

We study deformations of compact Riemannian manifolds of negative curvature. We give an equation for the infinitesimal conjugacy between geodesic flows. This in turn allows us to compute derivatives of intersection of metrics. As a consequence we obtain a proof of a theorem of Wolpert.

Jacobi-Bernoulli cohomology and deformations of schemes and maps

Ziv Ran (2012)

Open Mathematics

We introduce a notion of Jacobi-Bernoulli cohomology associated to a semi-simplicial Lie algebra (SELA). For an algebraic scheme X over ℂ, we construct a tangent SELA J X and show that the Jacobi-Bernoulli cohomology of J X is related to infinitesimal deformations of X.

Particles, phases, fields

L. Wojtczak, A. Urbaniak-Kucharczyk, I. Zasada, J. Rutkowski (1996)

Banach Center Publications

The physical properties of particles and phasesare considered in connection with their description by means of the deformation of space-time. The analogy between particle trajectories and phase boundaries is discussed. The geometry and its curvature is related to the Clifford algebraic structure whose construction in terms of the theory of deformation leads to the expected solutions for correlation functions referring to spectroscopy and scattering problems. The stochastic nature of space-time is...

Currently displaying 1 – 20 of 27

Page 1 Next