Asymptotic behavior of a sixth-order Cahn-Hilliard system

Alain Miranville

Open Mathematics (2014)

  • Volume: 12, Issue: 1, page 141-154
  • ISSN: 2391-5455

Abstract

top
Our aim in this paper is to study the asymptotic behavior, in terms of finite-dimensional attractors, of a sixth-order Cahn-Hilliard system. This system is based on a modification of the Ginzburg-Landau free energy proposed in [Torabi S., Lowengrub J., Voigt A., Wise S., A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465(2105), 1337–1359], assuming isotropy.

How to cite

top

Alain Miranville. "Asymptotic behavior of a sixth-order Cahn-Hilliard system." Open Mathematics 12.1 (2014): 141-154. <http://eudml.org/doc/269353>.

@article{AlainMiranville2014,
abstract = {Our aim in this paper is to study the asymptotic behavior, in terms of finite-dimensional attractors, of a sixth-order Cahn-Hilliard system. This system is based on a modification of the Ginzburg-Landau free energy proposed in [Torabi S., Lowengrub J., Voigt A., Wise S., A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465(2105), 1337–1359], assuming isotropy.},
author = {Alain Miranville},
journal = {Open Mathematics},
keywords = {Sixth-order Cahn-Hilliard system; Dissipativity; Global attractor; Exponential attractor; global attractor; exponential attractor; Landau free energy},
language = {eng},
number = {1},
pages = {141-154},
title = {Asymptotic behavior of a sixth-order Cahn-Hilliard system},
url = {http://eudml.org/doc/269353},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Alain Miranville
TI - Asymptotic behavior of a sixth-order Cahn-Hilliard system
JO - Open Mathematics
PY - 2014
VL - 12
IS - 1
SP - 141
EP - 154
AB - Our aim in this paper is to study the asymptotic behavior, in terms of finite-dimensional attractors, of a sixth-order Cahn-Hilliard system. This system is based on a modification of the Ginzburg-Landau free energy proposed in [Torabi S., Lowengrub J., Voigt A., Wise S., A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465(2105), 1337–1359], assuming isotropy.
LA - eng
KW - Sixth-order Cahn-Hilliard system; Dissipativity; Global attractor; Exponential attractor; global attractor; exponential attractor; Landau free energy
UR - http://eudml.org/doc/269353
ER -

References

top
  1. [1] Babin A.V., Vishik M.I., Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland, Amsterdam, 1992 Zbl0778.58002
  2. [2] Berry J., Elder K.R., Grant M., Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation, Phys. Rev. E, 2008, 77(6), #061506 
  3. [3] Berry J., Grant M., Elder K.R., Diffusive atomistic dynamics of edge dislocations in two dimensions, Phys. Rev. E, 2006, 73(3), #031609 
  4. [4] Caginalp G., An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 1986, 92(3), 205–245 Zbl0608.35080
  5. [5] Cahn J.W., Hilliard J.E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 1958, 28(2), 258–267 http://dx.doi.org/10.1063/1.1744102 
  6. [6] Chen F., Shen J., Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems, Commun. Comput. Phys., 2013, 13(5), 1189–1208 
  7. [7] Eden A., Foias C., Nicolaenko B., Temam R., Exponential Attractors for Dissipative Evolution Equations, RAM Res. Appl. Math., 37, John Wiley & Sons, Chichester, 1994 
  8. [8] Efendiev M., Miranville A., Zelik S., Exponential attractors for a nonlinear reaction-diffusion system in ℝ3, C. R. Acad. Sci. Paris Sér. I Math., 2000, 330(8), 713–718 http://dx.doi.org/10.1016/S0764-4442(00)00259-7 Zbl1151.35315
  9. [9] Efendiev M., Miranville A., Zelik S., Exponential attractors for a singularly perturbed Cahn-Hilliard system, Math. Nachr., 2004, 272, 11–31 http://dx.doi.org/10.1002/mana.200310186 Zbl1046.37047
  10. [10] Galenko P., Danilov D., Lebedev V., Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Phys. Rev. E, 2009, 79(5), #051110 
  11. [11] de Gennes P.G., Dynamics of fluctuations and spinodal decomposition in polymer blends, J. Chem. Phys., 1980, 72(9), 4756–4763 http://dx.doi.org/10.1063/1.439809 Zbl1110.82310
  12. [12] Gompper G., Kraus M., Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations, Phys. Rev. E, 1993, 47(6), 4289–4300 http://dx.doi.org/10.1103/PhysRevE.47.4289 
  13. [13] Gompper G., Kraus M., Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations, Phys. Rev. E, 1993, 47(6), 4301–4312 http://dx.doi.org/10.1103/PhysRevE.47.4301 
  14. [14] Hu Z., Wise S.M., Wang C., Lowengrub J.S., Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 2009, 228(15), 5323–5339 http://dx.doi.org/10.1016/j.jcp.2009.04.020 Zbl1171.82015
  15. [15] Korzec M.D., Nayar P., Rybka P., Global weak solutions to a sixth order Cahn-Hilliard type equation, SIAM J. Math. Anal., 2012, 44(5), 3369–3387 http://dx.doi.org/10.1137/100817590 Zbl1270.35252
  16. [16] Korzec M.D., Rybka P., On a higher order convective Cahn-Hilliard type equation, SIAM J. Appl. Math., 2012, 72(4), 1343–1360 http://dx.doi.org/10.1137/110834123 Zbl1257.35109
  17. [17] Miranville A., Zelik S., Attractors for dissipative partial differential equations in bounded and unbounded domains, In: Handbook of Differential Equations: Evolutionary Equations, 4, Elsevier, Amsterdam, 2008, 103–200 Zbl1221.37158
  18. [18] Pawłow I., Zajaczkowski W.M., A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures, Commun. Pure Appl. Anal., 2011, 10(6), 1823–1847 http://dx.doi.org/10.3934/cpaa.2011.10.1823 Zbl1229.35108
  19. [19] Pawłow I., Zajaczkowski W.M., On a class of sixth order viscous Cahn-Hilliard type equations, Discrete Contin. Dyn. Syst. Ser. S, 2013, 6(2), 517–546 Zbl1276.35100
  20. [20] Promislow K., Zhang H., Critical points of functionalized Lagrangians, Discrete Contin. Dyn. Syst., 2013, 33(4), 1231–1246 http://dx.doi.org/10.3934/dcds.2013.33.1231 Zbl1262.49017
  21. [21] Savina T.V., Golovin A.A., Davis S.H., Nepomnyashchy A.A., Voorhees P.W., Faceting of a growing crystal surface by surface diffusion, Phys. Rev. E, 2003, 67(2), #021606 
  22. [22] Schimperna G., Pawłow I., A Cahn-Hilliard equation with singular diffusion, J. Differential Equations, 2013, 254(2), 779–803 http://dx.doi.org/10.1016/j.jde.2012.09.018 Zbl1272.35115
  23. [23] Schimperna G., Pawłow I., On a class of Cahn-Hilliard models with nonlinear diffusion, SIAM J. Math. Anal., 2013, 45(1), 31–63 http://dx.doi.org/10.1137/110835608 Zbl1276.35101
  24. [24] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Appl. Math. Sci., 68, Springer, New York, 1997 http://dx.doi.org/10.1007/978-1-4612-0645-3 
  25. [25] Torabi S., Lowengrub J., Voigt A., Wise S., A new phase-field model for strongly anisotropic systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2009, 465(2105), 1337–1359 http://dx.doi.org/10.1098/rspa.2008.0385 Zbl1186.80014
  26. [26] Wang C., Wise S.M., Global smooth solutions of the three-dimensional modified phase field crystal equation, Methods Appl. Anal., 2010, 17(2), 191–211 Zbl1217.35040
  27. [27] Wang C., Wise S.M., An energy stable and convergent finite difference scheme for the modified phase field crystal equation, SIAM J. Numer. Anal., 2011, 49(3), 945–969 http://dx.doi.org/10.1137/090752675 Zbl1230.82005
  28. [28] Wise S.M., Wang C., Lowengrub J.S., An energy-stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 2009, 47(3), 2269–2288 http://dx.doi.org/10.1137/080738143 Zbl1201.35027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.