On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization

Ahmad Makki

Applications of Mathematics (2016)

  • Volume: 61, Issue: 6, page 685-725
  • ISSN: 0862-7940

Abstract

top
We consider the viscous Allen-Cahn and Cahn-Hilliard models with an additional term called the nonlinear Willmore regularization. First, we are interested in the well-posedness of these two models. Furthermore, we prove that both models possess a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned, we construct a robust family of exponential attractors, i.e. attractors which are continuous with respect to the perturbation parameter. Finally, we give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equation.

How to cite

top

Makki, Ahmad. "On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization." Applications of Mathematics 61.6 (2016): 685-725. <http://eudml.org/doc/287531>.

@article{Makki2016,
abstract = {We consider the viscous Allen-Cahn and Cahn-Hilliard models with an additional term called the nonlinear Willmore regularization. First, we are interested in the well-posedness of these two models. Furthermore, we prove that both models possess a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned, we construct a robust family of exponential attractors, i.e. attractors which are continuous with respect to the perturbation parameter. Finally, we give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equation.},
author = {Makki, Ahmad},
journal = {Applications of Mathematics},
keywords = {viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations; viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations},
language = {eng},
number = {6},
pages = {685-725},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization},
url = {http://eudml.org/doc/287531},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Makki, Ahmad
TI - On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 6
SP - 685
EP - 725
AB - We consider the viscous Allen-Cahn and Cahn-Hilliard models with an additional term called the nonlinear Willmore regularization. First, we are interested in the well-posedness of these two models. Furthermore, we prove that both models possess a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned, we construct a robust family of exponential attractors, i.e. attractors which are continuous with respect to the perturbation parameter. Finally, we give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equation.
LA - eng
KW - viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations; viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations
UR - http://eudml.org/doc/287531
ER -

References

top
  1. Allen, S. M., Cahn, J. W., 10.1016/0001-6160(79)90196-2, Acta Metall. 27 (1979), 1085-1095. (1979) DOI10.1016/0001-6160(79)90196-2
  2. Babin, A. V., Vishik, M. I., Attractors of Evolution Equations, Studies in Mathematics and Its Applications 25 North-Holland, Amsterdam (1992). (1992) Zbl0778.58002MR1156492
  3. Bai, F., Elliott, C. M., Gardiner, A., Spence, A., Stuart, A. M., The viscous Cahn-Hilliard equation. I: Computations, Nonlinearity 8 131-160 (1995). (1995) Zbl0818.35045MR1328591
  4. Barrett, J. W., Blowey, J. F., 10.1090/S0025-5718-99-01015-7, Math. Comput. (1999), 68 487-517. (1999) Zbl1126.65321MR1609678DOI10.1090/S0025-5718-99-01015-7
  5. Cahn, J. W., 10.1016/0001-6160(61)90182-1, Acta Metall. 9 (1961), 795-801. (1961) DOI10.1016/0001-6160(61)90182-1
  6. Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 28 (1958), 258-267. (1958) DOI10.1063/1.1744102
  7. Chen, F., Shen, J., 10.4208/cicp.101111.110512a, Commun. Comput. Phys. 13 (2013), 1189-1208. (2013) MR2988885DOI10.4208/cicp.101111.110512a
  8. Cherfils, L., Gatti, S., 10.1002/mma.3597, Math. Methods Appl. Sci. 39 (2016), 1705-1729. (2016) Zbl1339.35053MR3499040DOI10.1002/mma.3597
  9. Cherfils, L., Miranville, A., Zelik, S., 10.1007/s00032-011-0165-4, Milan J. Math. 79 (2011), 561-596. (2011) Zbl1250.35129MR2862028DOI10.1007/s00032-011-0165-4
  10. Eden, A., Foias, C., Nicolaenko, B., Temam, R., Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics 37 Masson, Paris; Wiley, Chichester (1994). (1994) Zbl0842.58056MR1335230
  11. Efendiev, M., Miranville, A., Zelik, S., 10.1002/mana.200310186, Math. Nachr. 272 (2004), 11-31. (2004) Zbl1046.37047MR2079758DOI10.1002/mana.200310186
  12. Efendiev, M., Zelik, S., Miranville, A., 10.1017/S030821050000408X, Proc. R. Soc. Edinb., Sect. A, Math. 13 (2005), 703-730. (2005) Zbl1088.37005MR2173336DOI10.1017/S030821050000408X
  13. Elliott, C. M., The Cahn-Hilliard model for the kinetics of phase separation, Mathematical Models for Phase Change Problems, Obidos 1988 Int. Ser. Numer. Math. 88 Birkkhäuser, Basel 35-73 (1989). (1989) Zbl0692.73003MR1038064
  14. Elliott, C. M., Stuart, A. M., Viscous Cahn-Hilliard equation. II: Analysis, J. Differ. Equations 128 387-414 (1996). (1996) Zbl0855.35067MR1398327
  15. Fabrie, P., Galusinski, C., Miranville, A., Zelik, S., 10.3934/dcds.2004.10.211, Discrete Contin. Dyn. Syst. 10 (2004), 211-238. (2004) Zbl1060.35011MR2026192DOI10.3934/dcds.2004.10.211
  16. Fife, P. C., Models for phase separation and their mathematics, Electron. J. Differ. Equ. (electronic only) 2000 (2000), Paper No. 48, 26 pages. (2000) Zbl0957.35062MR1772733
  17. Gatti, S., Grasselli, M., Miranville, A., Pata, V., 10.1090/S0002-9939-05-08340-1, Proc. Am. Math. Soc. 134 (2006), 117-127. (2006) Zbl1078.37047MR2170551DOI10.1090/S0002-9939-05-08340-1
  18. Grinfeld, M., Novick-Cohen, A., 10.1090/S0002-9947-99-02445-9, Trans. Am. Math. Soc. 351 2375-2406 (1999). (1999) Zbl0927.35045MR1650085DOI10.1090/S0002-9947-99-02445-9
  19. Gurtin, M. E., 10.1016/0167-2789(95)00173-5, Physica D 92 (1996), 178-192. (1996) Zbl0885.35121MR1387065DOI10.1016/0167-2789(95)00173-5
  20. Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-256. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
  21. Makki, A., Miranville, A., Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems, Electron. J. Differ. Equ. (electronic only) 2015 (2015), Paper No. 04, 15 pages. (2015) Zbl1334.35106MR3335735
  22. Makki, A., Miranville, A., Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions, Discrete Contin. Dyn. Syst. Ser. S (2016), 9 759-775. (2016) Zbl1346.35029MR3503639
  23. Miranville, A., Asymptotic behavior of a sixth-order Cahn-Hilliard system, Cent. Eur. J. Math. 12 (2014), 141-154. (2014) Zbl1286.35047MR3121828
  24. Miranville, A., Pata, V., Zelik, S., Exponential attractors for singularly perturbed damped wave equations: a simple construction, Asymptot. Anal. 53 (2007), 1-12. (2007) Zbl1139.35030MR2343457
  25. Miranville, A., Quintanilla, R., 10.1093/imamat/hxt044, IMA J. Appl. Math. 80 410-430 (2015). (2015) Zbl1320.35346MR3335166DOI10.1093/imamat/hxt044
  26. Miranville, A., Zelik, S., 10.1002/mma.464, Math. Methods Appl. Sci. 27 (2004), 545-582. (2004) Zbl1050.35113MR2041814DOI10.1002/mma.464
  27. Miranville, A., Zelik, S., 10.1002/mma.590, Math. Methods Appl. Sci. 28 (2005), 709-735. (2005) Zbl1068.35020MR2125817DOI10.1002/mma.590
  28. Miranville, A., Zelik, S., 10.1016/S1874-5717(08)00003-0, Handbook of Differential Equations: Evolutionary Equations, Vol. IV. C. M. Dafermos et al. Handbook of Differential Equations Elsevier, Amsterdam 103-200 (2008). (2008) Zbl1221.37158MR2508165DOI10.1016/S1874-5717(08)00003-0
  29. Novick-Cohen, A., On the viscous Cahn-Hilliard equation, Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986) Oxford Sci. Publ. Oxford Univ. Press, New York (1988), 329-342. (1988) Zbl0632.76119MR0970531
  30. Novick-Cohen, A., The Cahn-Hilliard equation: Mathematical and modeling perspectives, Adv. Math. Sci. Appl. (1998), 8 965-985. (1998) Zbl0917.35044MR1657208
  31. Novick-Cohen, A., The Cahn-Hilliard equation, Handbook of Differential Equations: Evolutionary Equations. Vol. 4 C. M. Dafermos et al. Handbook of Differential Equations Elsevier/North-Holland, Amsterdam 201-228 (2008). (2008) Zbl1185.35001MR2508166
  32. Saoud, B., Attracteurs Pour des Systèmes Dissipatifs non Autonomes, PhD thesis, Université de Poitiers French (2011). (2011) 
  33. Taylor, J. E., Cahn, J. W., 10.1016/S0167-2789(97)00177-2, Physica D 112 (1998), 381-411. (1998) Zbl0930.35201MR1607466DOI10.1016/S0167-2789(97)00177-2
  34. Temam, R., 10.1007/978-1-4612-0645-3, Applied Mathematical Sciences 68 Springer, New York (1997). (1997) Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3
  35. Torabi, S., Lowengrub, J., Voigt, A., Wise, S., 10.1098/rspa.2008.0385, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 (2009), 1337-1359. (2009) Zbl1186.80014MR2500806DOI10.1098/rspa.2008.0385
  36. Wise, S., Kim, J., Lowengrub, J., 10.1016/j.jcp.2007.04.020, J. Comput. Phys. 226 (2007), 414-446. (2007) Zbl1310.82044MR2356365DOI10.1016/j.jcp.2007.04.020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.