On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization
Applications of Mathematics (2016)
- Volume: 61, Issue: 6, page 685-725
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMakki, Ahmad. "On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization." Applications of Mathematics 61.6 (2016): 685-725. <http://eudml.org/doc/287531>.
@article{Makki2016,
abstract = {We consider the viscous Allen-Cahn and Cahn-Hilliard models with an additional term called the nonlinear Willmore regularization. First, we are interested in the well-posedness of these two models. Furthermore, we prove that both models possess a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned, we construct a robust family of exponential attractors, i.e. attractors which are continuous with respect to the perturbation parameter. Finally, we give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equation.},
author = {Makki, Ahmad},
journal = {Applications of Mathematics},
keywords = {viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations; viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations},
language = {eng},
number = {6},
pages = {685-725},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization},
url = {http://eudml.org/doc/287531},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Makki, Ahmad
TI - On the viscous Allen-Cahn and Cahn-Hilliard systems with Willmore regularization
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 6
SP - 685
EP - 725
AB - We consider the viscous Allen-Cahn and Cahn-Hilliard models with an additional term called the nonlinear Willmore regularization. First, we are interested in the well-posedness of these two models. Furthermore, we prove that both models possess a global attractor. In addition, as far as the viscous Allen-Cahn equation is concerned, we construct a robust family of exponential attractors, i.e. attractors which are continuous with respect to the perturbation parameter. Finally, we give some numerical simulations which show the effects of the viscosity term on the anisotropic and isotropic Cahn-Hilliard equation.
LA - eng
KW - viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations; viscous Cahn-Hilliard equation; viscous Allen-Cahn equation; Willmore regularization; well-posedness of models; global attractor; robust exponential attractors; anisotropy; simulations
UR - http://eudml.org/doc/287531
ER -
References
top- Allen, S. M., Cahn, J. W., 10.1016/0001-6160(79)90196-2, Acta Metall. 27 (1979), 1085-1095. (1979) DOI10.1016/0001-6160(79)90196-2
- Babin, A. V., Vishik, M. I., Attractors of Evolution Equations, Studies in Mathematics and Its Applications 25 North-Holland, Amsterdam (1992). (1992) Zbl0778.58002MR1156492
- Bai, F., Elliott, C. M., Gardiner, A., Spence, A., Stuart, A. M., The viscous Cahn-Hilliard equation. I: Computations, Nonlinearity 8 131-160 (1995). (1995) Zbl0818.35045MR1328591
- Barrett, J. W., Blowey, J. F., 10.1090/S0025-5718-99-01015-7, Math. Comput. (1999), 68 487-517. (1999) Zbl1126.65321MR1609678DOI10.1090/S0025-5718-99-01015-7
- Cahn, J. W., 10.1016/0001-6160(61)90182-1, Acta Metall. 9 (1961), 795-801. (1961) DOI10.1016/0001-6160(61)90182-1
- Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 28 (1958), 258-267. (1958) DOI10.1063/1.1744102
- Chen, F., Shen, J., 10.4208/cicp.101111.110512a, Commun. Comput. Phys. 13 (2013), 1189-1208. (2013) MR2988885DOI10.4208/cicp.101111.110512a
- Cherfils, L., Gatti, S., 10.1002/mma.3597, Math. Methods Appl. Sci. 39 (2016), 1705-1729. (2016) Zbl1339.35053MR3499040DOI10.1002/mma.3597
- Cherfils, L., Miranville, A., Zelik, S., 10.1007/s00032-011-0165-4, Milan J. Math. 79 (2011), 561-596. (2011) Zbl1250.35129MR2862028DOI10.1007/s00032-011-0165-4
- Eden, A., Foias, C., Nicolaenko, B., Temam, R., Exponential Attractors for Dissipative Evolution Equations, Research in Applied Mathematics 37 Masson, Paris; Wiley, Chichester (1994). (1994) Zbl0842.58056MR1335230
- Efendiev, M., Miranville, A., Zelik, S., 10.1002/mana.200310186, Math. Nachr. 272 (2004), 11-31. (2004) Zbl1046.37047MR2079758DOI10.1002/mana.200310186
- Efendiev, M., Zelik, S., Miranville, A., 10.1017/S030821050000408X, Proc. R. Soc. Edinb., Sect. A, Math. 13 (2005), 703-730. (2005) Zbl1088.37005MR2173336DOI10.1017/S030821050000408X
- Elliott, C. M., The Cahn-Hilliard model for the kinetics of phase separation, Mathematical Models for Phase Change Problems, Obidos 1988 Int. Ser. Numer. Math. 88 Birkkhäuser, Basel 35-73 (1989). (1989) Zbl0692.73003MR1038064
- Elliott, C. M., Stuart, A. M., Viscous Cahn-Hilliard equation. II: Analysis, J. Differ. Equations 128 387-414 (1996). (1996) Zbl0855.35067MR1398327
- Fabrie, P., Galusinski, C., Miranville, A., Zelik, S., 10.3934/dcds.2004.10.211, Discrete Contin. Dyn. Syst. 10 (2004), 211-238. (2004) Zbl1060.35011MR2026192DOI10.3934/dcds.2004.10.211
- Fife, P. C., Models for phase separation and their mathematics, Electron. J. Differ. Equ. (electronic only) 2000 (2000), Paper No. 48, 26 pages. (2000) Zbl0957.35062MR1772733
- Gatti, S., Grasselli, M., Miranville, A., Pata, V., 10.1090/S0002-9939-05-08340-1, Proc. Am. Math. Soc. 134 (2006), 117-127. (2006) Zbl1078.37047MR2170551DOI10.1090/S0002-9939-05-08340-1
- Grinfeld, M., Novick-Cohen, A., 10.1090/S0002-9947-99-02445-9, Trans. Am. Math. Soc. 351 2375-2406 (1999). (1999) Zbl0927.35045MR1650085DOI10.1090/S0002-9947-99-02445-9
- Gurtin, M. E., 10.1016/0167-2789(95)00173-5, Physica D 92 (1996), 178-192. (1996) Zbl0885.35121MR1387065DOI10.1016/0167-2789(95)00173-5
- Hecht, F., 10.1515/jnum-2012-0013, J. Numer. Math. 20 (2012), 251-256. (2012) Zbl1266.68090MR3043640DOI10.1515/jnum-2012-0013
- Makki, A., Miranville, A., Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems, Electron. J. Differ. Equ. (electronic only) 2015 (2015), Paper No. 04, 15 pages. (2015) Zbl1334.35106MR3335735
- Makki, A., Miranville, A., Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions, Discrete Contin. Dyn. Syst. Ser. S (2016), 9 759-775. (2016) Zbl1346.35029MR3503639
- Miranville, A., Asymptotic behavior of a sixth-order Cahn-Hilliard system, Cent. Eur. J. Math. 12 (2014), 141-154. (2014) Zbl1286.35047MR3121828
- Miranville, A., Pata, V., Zelik, S., Exponential attractors for singularly perturbed damped wave equations: a simple construction, Asymptot. Anal. 53 (2007), 1-12. (2007) Zbl1139.35030MR2343457
- Miranville, A., Quintanilla, R., 10.1093/imamat/hxt044, IMA J. Appl. Math. 80 410-430 (2015). (2015) Zbl1320.35346MR3335166DOI10.1093/imamat/hxt044
- Miranville, A., Zelik, S., 10.1002/mma.464, Math. Methods Appl. Sci. 27 (2004), 545-582. (2004) Zbl1050.35113MR2041814DOI10.1002/mma.464
- Miranville, A., Zelik, S., 10.1002/mma.590, Math. Methods Appl. Sci. 28 (2005), 709-735. (2005) Zbl1068.35020MR2125817DOI10.1002/mma.590
- Miranville, A., Zelik, S., 10.1016/S1874-5717(08)00003-0, Handbook of Differential Equations: Evolutionary Equations, Vol. IV. C. M. Dafermos et al. Handbook of Differential Equations Elsevier, Amsterdam 103-200 (2008). (2008) Zbl1221.37158MR2508165DOI10.1016/S1874-5717(08)00003-0
- Novick-Cohen, A., On the viscous Cahn-Hilliard equation, Material Instabilities in Continuum Mechanics (Edinburgh, 1985-1986) Oxford Sci. Publ. Oxford Univ. Press, New York (1988), 329-342. (1988) Zbl0632.76119MR0970531
- Novick-Cohen, A., The Cahn-Hilliard equation: Mathematical and modeling perspectives, Adv. Math. Sci. Appl. (1998), 8 965-985. (1998) Zbl0917.35044MR1657208
- Novick-Cohen, A., The Cahn-Hilliard equation, Handbook of Differential Equations: Evolutionary Equations. Vol. 4 C. M. Dafermos et al. Handbook of Differential Equations Elsevier/North-Holland, Amsterdam 201-228 (2008). (2008) Zbl1185.35001MR2508166
- Saoud, B., Attracteurs Pour des Systèmes Dissipatifs non Autonomes, PhD thesis, Université de Poitiers French (2011). (2011)
- Taylor, J. E., Cahn, J. W., 10.1016/S0167-2789(97)00177-2, Physica D 112 (1998), 381-411. (1998) Zbl0930.35201MR1607466DOI10.1016/S0167-2789(97)00177-2
- Temam, R., 10.1007/978-1-4612-0645-3, Applied Mathematical Sciences 68 Springer, New York (1997). (1997) Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3
- Torabi, S., Lowengrub, J., Voigt, A., Wise, S., 10.1098/rspa.2008.0385, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 (2009), 1337-1359. (2009) Zbl1186.80014MR2500806DOI10.1098/rspa.2008.0385
- Wise, S., Kim, J., Lowengrub, J., 10.1016/j.jcp.2007.04.020, J. Comput. Phys. 226 (2007), 414-446. (2007) Zbl1310.82044MR2356365DOI10.1016/j.jcp.2007.04.020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.