On Cohen-Macaulay modules over non-commutative surface singularities

Yuriy Drozd; Volodymyr Gavran

Open Mathematics (2014)

  • Volume: 12, Issue: 5, page 675-687
  • ISSN: 2391-5455

Abstract

top
We generalize the results of Kahn about a correspondence between Cohen-Macaulay modules and vector bundles to non-commutative surface singularities. As an application, we give examples of non-commutative surface singularities which are not Cohen-Macaulay finite, but are Cohen-Macaulay tame.

How to cite

top

Yuriy Drozd, and Volodymyr Gavran. "On Cohen-Macaulay modules over non-commutative surface singularities." Open Mathematics 12.5 (2014): 675-687. <http://eudml.org/doc/269361>.

@article{YuriyDrozd2014,
abstract = {We generalize the results of Kahn about a correspondence between Cohen-Macaulay modules and vector bundles to non-commutative surface singularities. As an application, we give examples of non-commutative surface singularities which are not Cohen-Macaulay finite, but are Cohen-Macaulay tame.},
author = {Yuriy Drozd, Volodymyr Gavran},
journal = {Open Mathematics},
keywords = {Cohen-Macaulay modules; Vector bundles; Non-commutative surface singularities; vector bundles; non-commutative surface singularities},
language = {eng},
number = {5},
pages = {675-687},
title = {On Cohen-Macaulay modules over non-commutative surface singularities},
url = {http://eudml.org/doc/269361},
volume = {12},
year = {2014},
}

TY - JOUR
AU - Yuriy Drozd
AU - Volodymyr Gavran
TI - On Cohen-Macaulay modules over non-commutative surface singularities
JO - Open Mathematics
PY - 2014
VL - 12
IS - 5
SP - 675
EP - 687
AB - We generalize the results of Kahn about a correspondence between Cohen-Macaulay modules and vector bundles to non-commutative surface singularities. As an application, we give examples of non-commutative surface singularities which are not Cohen-Macaulay finite, but are Cohen-Macaulay tame.
LA - eng
KW - Cohen-Macaulay modules; Vector bundles; Non-commutative surface singularities; vector bundles; non-commutative surface singularities
UR - http://eudml.org/doc/269361
ER -

References

top
  1. [1] Artin M., Maximal orders of global dimension and Krull dimension two, Invent. Math., 1986, 84(1), 195–222 http://dx.doi.org/10.1007/BF01388739 Zbl0591.16002
  2. [2] Atiyah M.F., Vector bundles over an elliptic curve, Proc. London Math. Soc., 1957, s3–7, 414–452 http://dx.doi.org/10.1112/plms/s3-7.1.414 Zbl0084.17305
  3. [3] Chan D., Ingalls C., The minimal model program for orders over surfaces, Invent. Math., 2005, 161(2), 427–452 http://dx.doi.org/10.1007/s00222-005-0438-z Zbl1078.14005
  4. [4] Drozd Yu.A., Greuel G.-M., Cohen-Macaulay module type, Compositio Math., 1993, 89(3), 315–338 
  5. [5] Drozd Yu.A., Greuel G.-M., Kashuba I., On Cohen-Macaulay modules on surface singularities, Mosc. Math. J., 2003, 3(2), 397–418 Zbl1051.13006
  6. [6] Drozd Yu.A., Kirichenko V.V., Primary orders with a finite number of indecomposable representations, Izv. Akad. Nauk SSSR Ser. Mat., 1973, 37, 715–736 (in Russian) 
  7. [7] Hartshorne R., Residues and Duality, Lecture Notes in Math., 20, Springer, Berlin-Heidelberg-New York, 1966 
  8. [8] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Berlin-Heidelberg, 1977 
  9. [9] Grothendieck A., A General Theory of Fibre Spaces with Structure Sheaf, University of Kansas, Lawrence, 1955, available at http://www.math.jussieu.fr/~leila/grothendieckcircle/GrothKansas.pd 
  10. [10] Grothendieck A., Éléments de Géométrie Algébrique. III. Étude Cohomologique des Faisceaux Cohérents. I, Inst. Hautes Études Sci. Publ. Math., 11, Presses Universitaires de France, Paris, 1961 
  11. [11] Kahn C.P., Reflexive modules on minimally elliptic singularities, Math. Ann., 1989, 285(1), 141–160 http://dx.doi.org/10.1007/BF01442678 Zbl0662.14022
  12. [12] Lipman J., Rational singularities, with application to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math., 1969, 36, 195–279 http://dx.doi.org/10.1007/BF02684604 Zbl0181.48903
  13. [13] Reiner I., Maximal Orders, London Math. Soc. Monogr., 5, Academic Press, London-New York, 1975 
  14. [14] Wahl J.M., Equisingular deformations of normal surface singularities, I, Ann. Math., 1976, 104(2), 325–356 http://dx.doi.org/10.2307/1971049 Zbl0358.14007
  15. [15] Yoshino Y., Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser., 146, Cambridge University Press, Cambridge, 1990 Zbl0745.13003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.