Adaptive multiscale scheme based on numerical density of entropy production for conservation laws

Mehmet Ersoy; Frédéric Golay; Lyudmyla Yushchenko

Open Mathematics (2013)

  • Volume: 11, Issue: 8, page 1392-1415
  • ISSN: 2391-5455

Abstract

top
We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to time consuming simulations, we propose a local time stepping algorithm. We also use high order time extensions applying the Adams-Bashforth time integration technique as well as the second order linear reconstruction in space. We numerically investigate the efficiency of the scheme through several test cases: Sod’s shock tube problem, Lax’s shock tube problem and the Shu-Osher test problem.

How to cite

top

Mehmet Ersoy, Frédéric Golay, and Lyudmyla Yushchenko. "Adaptive multiscale scheme based on numerical density of entropy production for conservation laws." Open Mathematics 11.8 (2013): 1392-1415. <http://eudml.org/doc/269362>.

@article{MehmetErsoy2013,
abstract = {We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to time consuming simulations, we propose a local time stepping algorithm. We also use high order time extensions applying the Adams-Bashforth time integration technique as well as the second order linear reconstruction in space. We numerically investigate the efficiency of the scheme through several test cases: Sod’s shock tube problem, Lax’s shock tube problem and the Shu-Osher test problem.},
author = {Mehmet Ersoy, Frédéric Golay, Lyudmyla Yushchenko},
journal = {Open Mathematics},
keywords = {Hyperbolic system; Finite volume scheme; Local mesh refinement; Numerical density of entropy production; Local time stepping; hyperbolic system; finite volume scheme; local mesh refinement; numerical density of entropy production; local time stepping},
language = {eng},
number = {8},
pages = {1392-1415},
title = {Adaptive multiscale scheme based on numerical density of entropy production for conservation laws},
url = {http://eudml.org/doc/269362},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Mehmet Ersoy
AU - Frédéric Golay
AU - Lyudmyla Yushchenko
TI - Adaptive multiscale scheme based on numerical density of entropy production for conservation laws
JO - Open Mathematics
PY - 2013
VL - 11
IS - 8
SP - 1392
EP - 1415
AB - We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to time consuming simulations, we propose a local time stepping algorithm. We also use high order time extensions applying the Adams-Bashforth time integration technique as well as the second order linear reconstruction in space. We numerically investigate the efficiency of the scheme through several test cases: Sod’s shock tube problem, Lax’s shock tube problem and the Shu-Osher test problem.
LA - eng
KW - Hyperbolic system; Finite volume scheme; Local mesh refinement; Numerical density of entropy production; Local time stepping; hyperbolic system; finite volume scheme; local mesh refinement; numerical density of entropy production; local time stepping
UR - http://eudml.org/doc/269362
ER -

References

top
  1. [1] Allahviranloo T., Ahmady N., Ahmady E., Numerical solution of fuzzy differential equations by predictor-corrector method, Inform. Sci., 2007, 177(7), 1633–1647 http://dx.doi.org/10.1016/j.ins.2006.09.015 Zbl1183.65090
  2. [2] Altmann C., Belat T., Gutnic M., Helluy P., Mathis H., Sonnendrücker É., Angulo W., Hérard J.-M., A local timestepping discontinuous Galerkin algorithm for the MHD system, In: CEMRACS 2008 - Modelling and Numerical Simulation of Complex Fluids, Marseille, July 21–August 29, 2008, ESAIM Proc., 28, EDP Sciences, Les Ulis, 2009, 33–54 Zbl1176.76058
  3. [3] Berger M.J., Oliger J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 1984, 53(3), 484–512 http://dx.doi.org/10.1016/0021-9991(84)90073-1 Zbl0536.65071
  4. [4] Cockburn B., Gremaud P.-A., A priori error estimates for numerical methods for scalar conservation laws. Part II: Flux-splitting monotone schemes on irregular Cartesian grids, Math. Comp., 1997, 66(218), 547–572 http://dx.doi.org/10.1090/S0025-5718-97-00838-7 Zbl0866.65061
  5. [5] Croisille J.-P., Contribution à l’Étude Théorique et à l’Approximation par Éléments Finis du Système Hyperbolique de la Dynamique des Gaz Multidimensionnelle et Multiespèces, PhD thesis, Université de Paris VI, 1991 
  6. [6] Eymard R., Gallouët T., Herbin R., Finite Volume Methods, In: Handbook of Numerical Analysis, VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, 713–1020 Zbl0981.65095
  7. [7] Gallouët T., Hérard J.-M., Seguin N., Some recent finite volume schemes to compute Euler equations using real gas EOS, Internat. J. Numer. Methods Fluids, 2002, 39(12), 1073–1138 http://dx.doi.org/10.1002/fld.346 Zbl1053.76044
  8. [8] Godlewski E., Raviart P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Appl. Math. Sci., 118, Springer, New York, 1996 Zbl0860.65075
  9. [9] Golay F., Numerical entropy production and error indicator for compressible flows, Comptes Rendus Mécanique, 2009, 337(4), 233–237 http://dx.doi.org/10.1016/j.crme.2009.04.004 Zbl1173.76402
  10. [10] Guermond J.-L., Pasquetti R., Popov B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 2011, 230(11), 4248–4267 http://dx.doi.org/10.1016/j.jcp.2010.11.043 Zbl1220.65134
  11. [11] Hairer E., Nørsett S.P., Wanner G., Solving Ordinary Differential Equations. I, 2nd ed., Springer Ser. Comput. Math., 8, Springer, Berlin, 1993 Zbl0789.65048
  12. [12] Houston P., Mackenzie J.A., Süli E., Warnecke G., A posteriori error analysis for numerical approximations of Friedrichs systems, Numer. Math., 1999, 82(3), 433–470 http://dx.doi.org/10.1007/s002110050426 Zbl0935.65096
  13. [13] Jenny P., Lee S.H., Tchelepi H.A., Adaptive multiscale finite-volume method for multiphase flow and transport in porous media, Multiscale Model. Simul., 2005, 3(1), 50–64 http://dx.doi.org/10.1137/030600795 Zbl1160.76372
  14. [14] Karni S., Kurganov A., Local error analysis for approximate solutions of hyperbolic conservation laws, Adv. Comput. Math., 2005, 22(1), 79–99 http://dx.doi.org/10.1007/s10444-005-7099-8 Zbl1127.65070
  15. [15] Karni S., Kurganov A., Petrova G., A smoothness indicator for adaptive algorithms for hyperbolic systems, J. Comput. Phys., 2002, 178(2), 323–341 http://dx.doi.org/10.1006/jcph.2002.7024 Zbl0998.65092
  16. [16] Müller S., Stiriba Y., Fully adaptive multiscale schemes for conservation laws employing locally varying time stepping, J. Sci. Comput., 2007, 30(3), 493–531 http://dx.doi.org/10.1007/s10915-006-9102-z Zbl1110.76037
  17. [17] Osher S., Sanders R., Numerical approximations to nonlinear conservation laws with locally varying time and space grids, Math. Comp., 1983, 41(164), 321–336 http://dx.doi.org/10.1090/S0025-5718-1983-0717689-8 Zbl0592.65068
  18. [18] Puppo G., Numerical entropy production on shocks and smooth transitions, J. Sci. Comput., 2002, 17(1–4), 263–271 http://dx.doi.org/10.1023/A:1015117118157 Zbl1001.76070
  19. [19] Puppo G., Numerical entropy production for central schemes, SIAM J. Sci. Comput., 2004, 25(4), 1382–1415 http://dx.doi.org/10.1137/S1064827502386712 Zbl1061.65094
  20. [20] Puppo G., Semplice M., Numerical entropy and adaptivity for finite volume schemes, Commun. Comput. Phys., 2011, 10(5), 1132–1160 
  21. [21] Shu C.-W., Osher S., Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys., 1988, 77(2), 439–471 http://dx.doi.org/10.1016/0021-9991(88)90177-5 Zbl0653.65072
  22. [22] Simeoni C., Remarks on the consistency of upwind source at interface schemes on nonuniform grids, J. Sci. Comput., 2011, 48(1–3), 333–338 http://dx.doi.org/10.1007/s10915-010-9442-6 Zbl1221.65239
  23. [23] Sod G.A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 1978, 27(1), 1–31 http://dx.doi.org/10.1016/0021-9991(78)90023-2 
  24. [24] Sonar T., Hannemann V., Hempel D. Dynamic adaptivity and residual control in unsteady compressible flow computation, In: Theory and Numerical Methods for Initial-Boundary Value Problems, Math. Comput. Modelling, 1994, 20(10–11), 201–213 http://dx.doi.org/10.1016/0895-7177(94)90178-3 Zbl0816.76073
  25. [25] Tan Z., Zhang Z., Huang Y., Tang T., Moving mesh methods with locally varying time steps, J. Comput. Phys., 2004, 200(1), 347–367 http://dx.doi.org/10.1016/j.jcp.2004.04.007 Zbl1054.65099
  26. [26] Tang H., Warnecke G., A class of high resolution difference schemes for nonlinear Hamilton-Jacobi equations with varying time and space grids, SIAM J. Sci. Comput., 2005, 26(4), 1415–1431 http://dx.doi.org/10.1137/S1064827503428126 Zbl1079.65092
  27. [27] Toro E.F., Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd ed., Springer, Berlin, 1999 http://dx.doi.org/10.1007/978-3-662-03915-1 Zbl0923.76004
  28. [28] Zhang X.D., Trépanier J.-Y., Camarero R., A posteriori error estimation for finite-volume solutions of hyperbolic conservation laws, Comput. Methods Appl. Engrg., 2000, 185(1), 1–19 http://dx.doi.org/10.1016/S0045-7825(99)00099-7 Zbl0954.65071

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.