The search session has expired. Please query the service again.
We compare the numerical performance of several methods for solving the discrete contact problem arising from the finite element discretisation of elastic systems with numerous contact points. The problem is formulated as a variational inequality and discretised using piecewise quadratic finite elements on a triangulation of the domain. At the discrete level, the variational inequality is reformulated as a classical linear complementarity system. We compare several state-of-art algorithms that have...
We propose a 1D adaptive numerical scheme for hyperbolic conservation laws based on the numerical density of entropy production (the amount of violation of the theoretical entropy inequality). This density is used as an a posteriori error which provides information if the mesh should be refined in the regions where discontinuities occur or coarsened in the regions where the solution remains smooth. As due to the Courant-Friedrich-Levy stability condition the time step is restricted and leads to...
In this paper, we first construct a model for free surface flows that takes into account the air entrainment by a system of four partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). The obtained system is conditionally hyperbolic. Then, we propose a mathematical kinetic interpretation of this system to finally construct a two-layer kinetic scheme...
We consider the system of partial differential equations governing
the one-dimensional flow of two superposed immiscible layers of
shallow water. The difficulty in this system comes
from the coupling terms involving some derivatives of the unknowns
that make the system nonconservative, and eventually nonhyperbolic.
Due to these terms, a numerical scheme obtained by performing an
arbitrary scheme to each layer, and using time-splitting or
other similar techniques leads to instabilities in...
In order to describe a solid which deforms smoothly in some region, but non smoothly in some other region, many multiscale methods have recently been proposed. They aim at coupling an atomistic model (discrete mechanics) with a macroscopic model (continuum mechanics). We provide here a theoretical ground for such a coupling in a one-dimensional setting. We briefly study the general case of a convex energy, and next concentrate on a specific example of a nonconvex energy, the Lennard-Jones case....
In order to describe a solid which deforms smoothly in some region, but
non smoothly in some other region, many multiscale methods have recently
been proposed. They aim at coupling an atomistic model (discrete
mechanics) with a macroscopic model
(continuum mechanics).
We provide here a theoretical ground for such a coupling in a
one-dimensional setting. We briefly study the general case of a convex
energy, and next concentrate on
a specific example of a nonconvex energy, the Lennard-Jones case....
Free material optimization solves an important problem of structural engineering, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathematical formulation leads to a saddle-point problem. It can be solved numerically by the finite element method. The convergence of the finite element method can be proved if the spaces involved satisfy suitable approximation assumptions. An example of a finite-element discretization is included.
In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...
In this paper, we are concerned with a kind of Signorini
transmission problem in a unbounded domain. A variational
inequality is derived when discretizing this problem by coupled
FEM-BEM. To solve such variational inequality, an iterative
method, which can be viewed as a variant of the D-N alternative
method, will be introduced. In the iterative method, the finite
element part and the boundary element part can be solved
independently. It will be shown that the convergence speed of this
iteration...
A linearly convergent iterative algorithm that approximates the rank-1 convex envelope of a given function , i.e. the largest function below which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.
A linearly convergent iterative algorithm that approximates the
rank-1 convex envelope of a given function ,
i.e. the largest function below f which is convex along all rank-1 lines, is
established. The proposed algorithm is a modified version of an approximation
scheme due to Dolzmann and Walkington.
The present paper proposes and analyzes a general locking free mixed strategy for computing the deformation of incompressible three dimensional structures placed inside
flexible membranes. The model involves as in
Chapelle and Ferent [Math. Models Methods Appl. Sci.13 (2003) 573–595]
a bending dominated shell envelope and a quasi incompressible elastic body.
The present work extends an earlier work of
Arnold and Brezzi [Math Comp.66 (1997) 1–14]
treating the shell part and proposes
a global...
The paper deals with approximations and the numerical realization of a class of hemivariational inequalities used for modeling of delamination and nonmonotone friction problems. Assumptions guaranteeing convergence of discrete models are verified and numerical results of several model examples computed by a nonsmooth variant of Newton method are presented.
Rock bolts as construction elements are often used in underground civil engineering projects. This work deals with their numerical modelling. Aydan special finite elements for the description of rock bolts and hexahedral quadratic finite elements for the description of rock massif were used. A code for the computation of stiffness matrices and right hand sides of these elements was developed. The code was tested on several simple test examples and their results were compared with the analytical...
The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.
Contact problems with given friction and the coefficient of friction depending on their solutions are studied. We prove the existence of at least one solution; uniqueness is obtained under additional assumptions on the coefficient of friction. The method of successive approximations combined with the dual formulation of each iterative step is used for numerical realization. Numerical results of model examples are shown.
This paper presents the main concept and several key features of the user-defined interface of COMSOL Java API for the solution of mechanical problems in fractured rock. This commercial computational system based on FEM has yet to incorporate fractures in mechanical problems.
Our aim is to solve a 2D mechanical problem with a fracture which is defined separately from finite-element discretization and the fracture properties are included through the constitutive laws. This will be performed based...
We give an analysis of the stability and uniqueness of the simply
laminated microstructure for all three tetragonal to monoclinic
martensitic transformations. The energy density for tetragonal to
monoclinic transformations has four rotationally invariant wells since
the transformation has four variants. One of these tetragonal to
monoclinic martensitic transformations corresponds to the shearing of
the rectangular side, one corresponds to the shearing of the square
base, and one corresponds to...
Currently displaying 1 –
20 of
23