Fourier-Feynman transforms of unbounded functionals on abstract Wiener space
Open Mathematics (2010)
- Volume: 8, Issue: 3, page 616-632
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topByoung Kim, Il Yoo, and Dong Cho. "Fourier-Feynman transforms of unbounded functionals on abstract Wiener space." Open Mathematics 8.3 (2010): 616-632. <http://eudml.org/doc/269381>.
@article{ByoungKim2010,
abstract = {Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class \[ \mathcal \{F\}\_\{\mathcal \{A\}\_1 ,\mathcal \{A\}\_2 \} \]
A1,A2 than the Fresnel class \[ \mathcal \{F\} \]
(B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space having the form \[ F\left( x \right) = G\left( x \right)\psi \left( \{\left( \{\vec\{e\},x\} \right)^ \sim \} \right) \]
, where G∈\[ \mathcal \{F\} \]
(B)and Ψ = ψ + ϕ with ψ ∈ L 1(ℝn) and ϕ is the Fourier transform of a complex Borel measure of bounded variation on ℝn. We also prove a translation theorem for the analytic Feynman integral of the above functionals.},
author = {Byoung Kim, Il Yoo, Dong Cho},
journal = {Open Mathematics},
keywords = {Abstract Wiener space; Fresnel class; Analytic Feynman integral; Fourier-Feynman transform; Convolution; First variation; Translation theorem; abstract Wiener space; analytic Feynman integral; convolution; first variation; translation theorem},
language = {eng},
number = {3},
pages = {616-632},
title = {Fourier-Feynman transforms of unbounded functionals on abstract Wiener space},
url = {http://eudml.org/doc/269381},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Byoung Kim
AU - Il Yoo
AU - Dong Cho
TI - Fourier-Feynman transforms of unbounded functionals on abstract Wiener space
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 616
EP - 632
AB - Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class \[ \mathcal {F}_{\mathcal {A}_1 ,\mathcal {A}_2 } \]
A1,A2 than the Fresnel class \[ \mathcal {F} \]
(B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space having the form \[ F\left( x \right) = G\left( x \right)\psi \left( {\left( {\vec{e},x} \right)^ \sim } \right) \]
, where G∈\[ \mathcal {F} \]
(B)and Ψ = ψ + ϕ with ψ ∈ L 1(ℝn) and ϕ is the Fourier transform of a complex Borel measure of bounded variation on ℝn. We also prove a translation theorem for the analytic Feynman integral of the above functionals.
LA - eng
KW - Abstract Wiener space; Fresnel class; Analytic Feynman integral; Fourier-Feynman transform; Convolution; First variation; Translation theorem; abstract Wiener space; analytic Feynman integral; convolution; first variation; translation theorem
UR - http://eudml.org/doc/269381
ER -
References
top- [1] Ahn J.M., Chang K.S., Kim B.S., Yoo I., Fourier-Feynman transform, convolution and first variation, Acta Math. Hungar., 2003, 100, 215–235 http://dx.doi.org/10.1023/A:1025041525913 Zbl1096.28009
- [2] Cameron R.H., Storvick D.A., An L 2 analytic Fourier-Feynman transform, Michigan Math. J., 1976, 23, 1–30 http://dx.doi.org/10.1307/mmj/1029001617 Zbl0382.42008
- [3] Cameron R.H., Storvick D.A., Some Banach algebras of analytic Feynman integrable functionals, Analytic Functions (Kozubnik, 1979), Lecture Notes in Mathematics 798, Springer-Verlag, Berlin-New York, 1980, 18–67
- [4] Cameron R.H., Storvick D.A., A new translation theorem for the analytic Feynman integral, Rev. Roumaine Math. Pures Appl., 1982, 27(9), 937–944 Zbl0507.28009
- [5] Cameron R.H., Storvick D.A., Feynman integral of variations of functionals, Gaussian random fields (Nagoya, 1990), Ser. Probab. Statist. 1, World Sci. Publ., River Edge, NJ, 1991, 1, 144–157 Zbl0820.46045
- [6] Chang K.S., Cho D.H., Kim B.S., Song T.S., Yoo I., Relationships involving generalized Fourier-Feynman transform, convolution and first variation, Integral Transform. Spec. Funct., 2005, 16, 391–405 http://dx.doi.org/10.1080/10652460412331320359 Zbl1066.28006
- [7] Chang K.S., Cho D.H., Kim B.S., Song T.S., Yoo I., Sequential Fourier-Feynman transform, convolution and first variation, Trans. Amer. Math. Soc., 2008, 360, 1819–1838 http://dx.doi.org/10.1090/S0002-9947-07-04383-8 Zbl1130.28004
- [8] Chang K.S., Kim B.S., Yoo I., Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space, Rocky Mountain J. Math., 2000, 30, 823–842 http://dx.doi.org/10.1216/rmjm/1021477245 Zbl1033.28006
- [9] Chang K.S., Kim B.S., Yoo I., Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transform. Spec. Funct., 2000, 10, 179–200 http://dx.doi.org/10.1080/10652460008819285 Zbl0973.28011
- [10] Huffman T., Park C., Skoug D., Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc., 1995, 347, 661–673 http://dx.doi.org/10.2307/2154908 Zbl0880.28011
- [11] Huffman T., Park C., Skoug D., Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J., 1996, 43, 247–261 http://dx.doi.org/10.1307/mmj/1029005461 Zbl0864.28007
- [12] Johnson G.W., Skoug D., An L p analytic Fourier-Feynman transform, Michigan Math. J., 1979, 26, 103–127 http://dx.doi.org/10.1307/mmj/1029002166 Zbl0409.28007
- [13] Kallianpur G., Bromley C., Generalized Feynman integrals using analytic continuation in several complex variables, In: Stochastic Analysis and Applications, Dekker, New York, 1984, 433–450 Zbl0554.60061
- [14] Kallianpur G., Kannan D., Karandikar R.L., Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula, Ann. Inst. Henri Poincare, 1985, 21, 323–361 Zbl0583.60049
- [15] Kuo H.H., Gaussian measures in Banach spaces, Lecture Notes in Mathematics 463, Springer-Verlag, Berlin, 1975 Zbl0306.28010
- [16] Park C., Skoug D., Storvick D., Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. Math., 1998, 28, 1447–1468 http://dx.doi.org/10.1216/rmjm/1181071725 Zbl0934.28008
- [17] Skoug D., Storvick D., A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math., 2004, 34, 1147–1176 http://dx.doi.org/10.1216/rmjm/1181069848 Zbl1172.42308
- [18] Yeh J., Convolution in Fourier-Wiener transform, Pacific J. Math., 1965, 15, 731–738 Zbl0128.33702
- [19] Yoo I., Convolution and the Fourier-Wiener transform on abstract Wiener space, Rocky Mountain J. Math., 1995, 25, 1577–1587 http://dx.doi.org/10.1216/rmjm/1181072163 Zbl0855.28006
- [20] Yoo I., Song T.S., Kim B.S., A change of scale formula for Wiener integrals of unbounded functions II, Commun. Korean Math. Soc., 2006, 21, 117–133 http://dx.doi.org/10.4134/CKMS.2006.21.1.117 Zbl1163.28311
- [21] Yoo I., Song T.S., Kim B.S., Chang K.S., A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math., 2004, 34, 371–389 http://dx.doi.org/10.1216/rmjm/1181069911 Zbl1048.28010
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.