Fourier-Feynman transforms of unbounded functionals on abstract Wiener space

Byoung Kim; Il Yoo; Dong Cho

Open Mathematics (2010)

  • Volume: 8, Issue: 3, page 616-632
  • ISSN: 2391-5455

Abstract

top
Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class 𝒜 1 , 𝒜 2 A1,A2 than the Fresnel class (B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space having the form F x = G x ψ e , x , where G∈ (B)and Ψ = ψ + ϕ with ψ ∈ L 1(ℝn) and ϕ is the Fourier transform of a complex Borel measure of bounded variation on ℝn. We also prove a translation theorem for the analytic Feynman integral of the above functionals.

How to cite

top

Byoung Kim, Il Yoo, and Dong Cho. "Fourier-Feynman transforms of unbounded functionals on abstract Wiener space." Open Mathematics 8.3 (2010): 616-632. <http://eudml.org/doc/269381>.

@article{ByoungKim2010,
abstract = {Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class \[ \mathcal \{F\}\_\{\mathcal \{A\}\_1 ,\mathcal \{A\}\_2 \} \] A1,A2 than the Fresnel class \[ \mathcal \{F\} \] (B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space having the form \[ F\left( x \right) = G\left( x \right)\psi \left( \{\left( \{\vec\{e\},x\} \right)^ \sim \} \right) \] , where G∈\[ \mathcal \{F\} \] (B)and Ψ = ψ + ϕ with ψ ∈ L 1(ℝn) and ϕ is the Fourier transform of a complex Borel measure of bounded variation on ℝn. We also prove a translation theorem for the analytic Feynman integral of the above functionals.},
author = {Byoung Kim, Il Yoo, Dong Cho},
journal = {Open Mathematics},
keywords = {Abstract Wiener space; Fresnel class; Analytic Feynman integral; Fourier-Feynman transform; Convolution; First variation; Translation theorem; abstract Wiener space; analytic Feynman integral; convolution; first variation; translation theorem},
language = {eng},
number = {3},
pages = {616-632},
title = {Fourier-Feynman transforms of unbounded functionals on abstract Wiener space},
url = {http://eudml.org/doc/269381},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Byoung Kim
AU - Il Yoo
AU - Dong Cho
TI - Fourier-Feynman transforms of unbounded functionals on abstract Wiener space
JO - Open Mathematics
PY - 2010
VL - 8
IS - 3
SP - 616
EP - 632
AB - Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class \[ \mathcal {F}_{\mathcal {A}_1 ,\mathcal {A}_2 } \] A1,A2 than the Fresnel class \[ \mathcal {F} \] (B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space having the form \[ F\left( x \right) = G\left( x \right)\psi \left( {\left( {\vec{e},x} \right)^ \sim } \right) \] , where G∈\[ \mathcal {F} \] (B)and Ψ = ψ + ϕ with ψ ∈ L 1(ℝn) and ϕ is the Fourier transform of a complex Borel measure of bounded variation on ℝn. We also prove a translation theorem for the analytic Feynman integral of the above functionals.
LA - eng
KW - Abstract Wiener space; Fresnel class; Analytic Feynman integral; Fourier-Feynman transform; Convolution; First variation; Translation theorem; abstract Wiener space; analytic Feynman integral; convolution; first variation; translation theorem
UR - http://eudml.org/doc/269381
ER -

References

top
  1. [1] Ahn J.M., Chang K.S., Kim B.S., Yoo I., Fourier-Feynman transform, convolution and first variation, Acta Math. Hungar., 2003, 100, 215–235 http://dx.doi.org/10.1023/A:1025041525913 Zbl1096.28009
  2. [2] Cameron R.H., Storvick D.A., An L 2 analytic Fourier-Feynman transform, Michigan Math. J., 1976, 23, 1–30 http://dx.doi.org/10.1307/mmj/1029001617 Zbl0382.42008
  3. [3] Cameron R.H., Storvick D.A., Some Banach algebras of analytic Feynman integrable functionals, Analytic Functions (Kozubnik, 1979), Lecture Notes in Mathematics 798, Springer-Verlag, Berlin-New York, 1980, 18–67 
  4. [4] Cameron R.H., Storvick D.A., A new translation theorem for the analytic Feynman integral, Rev. Roumaine Math. Pures Appl., 1982, 27(9), 937–944 Zbl0507.28009
  5. [5] Cameron R.H., Storvick D.A., Feynman integral of variations of functionals, Gaussian random fields (Nagoya, 1990), Ser. Probab. Statist. 1, World Sci. Publ., River Edge, NJ, 1991, 1, 144–157 Zbl0820.46045
  6. [6] Chang K.S., Cho D.H., Kim B.S., Song T.S., Yoo I., Relationships involving generalized Fourier-Feynman transform, convolution and first variation, Integral Transform. Spec. Funct., 2005, 16, 391–405 http://dx.doi.org/10.1080/10652460412331320359 Zbl1066.28006
  7. [7] Chang K.S., Cho D.H., Kim B.S., Song T.S., Yoo I., Sequential Fourier-Feynman transform, convolution and first variation, Trans. Amer. Math. Soc., 2008, 360, 1819–1838 http://dx.doi.org/10.1090/S0002-9947-07-04383-8 Zbl1130.28004
  8. [8] Chang K.S., Kim B.S., Yoo I., Analytic Fourier-Feynman transform and convolution of functionals on abstract Wiener space, Rocky Mountain J. Math., 2000, 30, 823–842 http://dx.doi.org/10.1216/rmjm/1021477245 Zbl1033.28006
  9. [9] Chang K.S., Kim B.S., Yoo I., Fourier-Feynman transform, convolution and first variation of functionals on abstract Wiener space, Integral Transform. Spec. Funct., 2000, 10, 179–200 http://dx.doi.org/10.1080/10652460008819285 Zbl0973.28011
  10. [10] Huffman T., Park C., Skoug D., Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc., 1995, 347, 661–673 http://dx.doi.org/10.2307/2154908 Zbl0880.28011
  11. [11] Huffman T., Park C., Skoug D., Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J., 1996, 43, 247–261 http://dx.doi.org/10.1307/mmj/1029005461 Zbl0864.28007
  12. [12] Johnson G.W., Skoug D., An L p analytic Fourier-Feynman transform, Michigan Math. J., 1979, 26, 103–127 http://dx.doi.org/10.1307/mmj/1029002166 Zbl0409.28007
  13. [13] Kallianpur G., Bromley C., Generalized Feynman integrals using analytic continuation in several complex variables, In: Stochastic Analysis and Applications, Dekker, New York, 1984, 433–450 Zbl0554.60061
  14. [14] Kallianpur G., Kannan D., Karandikar R.L., Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces and a Cameron-Martin formula, Ann. Inst. Henri Poincare, 1985, 21, 323–361 Zbl0583.60049
  15. [15] Kuo H.H., Gaussian measures in Banach spaces, Lecture Notes in Mathematics 463, Springer-Verlag, Berlin, 1975 Zbl0306.28010
  16. [16] Park C., Skoug D., Storvick D., Relationships among the first variation, the convolution product, and the Fourier-Feynman transform, Rocky Mountain J. Math., 1998, 28, 1447–1468 http://dx.doi.org/10.1216/rmjm/1181071725 Zbl0934.28008
  17. [17] Skoug D., Storvick D., A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math., 2004, 34, 1147–1176 http://dx.doi.org/10.1216/rmjm/1181069848 Zbl1172.42308
  18. [18] Yeh J., Convolution in Fourier-Wiener transform, Pacific J. Math., 1965, 15, 731–738 Zbl0128.33702
  19. [19] Yoo I., Convolution and the Fourier-Wiener transform on abstract Wiener space, Rocky Mountain J. Math., 1995, 25, 1577–1587 http://dx.doi.org/10.1216/rmjm/1181072163 Zbl0855.28006
  20. [20] Yoo I., Song T.S., Kim B.S., A change of scale formula for Wiener integrals of unbounded functions II, Commun. Korean Math. Soc., 2006, 21, 117–133 http://dx.doi.org/10.4134/CKMS.2006.21.1.117 Zbl1163.28311
  21. [21] Yoo I., Song T.S., Kim B.S., Chang K.S., A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math., 2004, 34, 371–389 http://dx.doi.org/10.1216/rmjm/1181069911 Zbl1048.28010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.