Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space

Jae Gil Choi; Sang Kil Shim

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 849-868
  • ISSN: 0011-4642

Abstract

top
We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space ( H , B , ν ) . An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space B . Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class ( B ) and we finally investigate some Fubini theorems involving CFFT.

How to cite

top

Choi, Jae Gil, and Shim, Sang Kil. "Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space." Czechoslovak Mathematical Journal 73.3 (2023): 849-868. <http://eudml.org/doc/299121>.

@article{Choi2023,
abstract = {We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space $(H,B,\nu )$. An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space $B$. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class $\mathcal \{F\}(B)$ and we finally investigate some Fubini theorems involving CFFT.},
author = {Choi, Jae Gil, Shim, Sang Kil},
journal = {Czechoslovak Mathematical Journal},
keywords = {abstract Wiener space; conditional Wiener integral; conditional Fourier-Feynman transform; Fubini theorem},
language = {eng},
number = {3},
pages = {849-868},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space},
url = {http://eudml.org/doc/299121},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Choi, Jae Gil
AU - Shim, Sang Kil
TI - Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 849
EP - 868
AB - We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space $(H,B,\nu )$. An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space $B$. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class $\mathcal {F}(B)$ and we finally investigate some Fubini theorems involving CFFT.
LA - eng
KW - abstract Wiener space; conditional Wiener integral; conditional Fourier-Feynman transform; Fubini theorem
UR - http://eudml.org/doc/299121
ER -

References

top
  1. Ahn, J. M., Chang, K. S., Kim, B. S., Yoo, I., 10.1023/A:1025041525913, Acta. Math. Hung. 100 (2003), 215-235. (2003) Zbl1096.28009MR1990183DOI10.1023/A:1025041525913
  2. Breiman, L., Probability, Addison-Wesley Series in Statistics. Addison-Wesley, Reading (1968). (1968) Zbl0174.48801MR0229267
  3. Brue, M. D., A Functional Transform for Feynman Integrals Similar to the Fourier Transform: Ph. D. Thesis, University of Minnesota, Minneapolis (1972). (1972) MR2622178
  4. Cameron, R. H., Storvick, D. A., 10.1512/iumj.1969.18.18041, J. Math. Mech. 18 (1968), 517-552. (1968) Zbl0186.20701MR0236347DOI10.1512/iumj.1969.18.18041
  5. Cameron, R. H., Storvick, D. A., 10.1515/9781400869312-012, Problems in Analysis Princeton University Press, Princeton (1970), 175-193. (1970) Zbl0215.19101MR0348071DOI10.1515/9781400869312-012
  6. Cameron, R. H., Storvick, D. A., 10.1112/plms/s3-27.2.345, Proc. Lond. Math. Soc., Ser. III 27 (1973), 345-360. (1973) Zbl0264.28005MR0342674DOI10.1112/plms/s3-27.2.345
  7. Cameron, R. H., Storvick, D. A., 10.1016/0022-247X(73)90142-X, J. Math. Anal. Appl. 42 (1973), 330-372. (1973) Zbl0256.46055MR0320264DOI10.1016/0022-247X(73)90142-X
  8. Cameron, R. H., Storvick, D. A., 10.1307/mmj/1029001617, Mich. Math. J. 23 (1976), 1-30. (1976) Zbl0382.42008MR0404571DOI10.1307/mmj/1029001617
  9. Chang, K. S., Chang, J. S., Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc. 21 (1984), 99-106. (1984) Zbl0576.28023MR0768465
  10. Chang, K. S., Kim, B. S., Yoo, I., 10.1080/10652460008819285, Integral Transforms Spec. Funct. 10 (2000), 179-200. (2000) Zbl0973.28011MR1811008DOI10.1080/10652460008819285
  11. Chang, K. S., Song, T. S., Yoo, I., Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), 485-501. (2001) Zbl1033.28007MR1817632
  12. Chang, S. J., Park, C., Skoug, D., 10.1216/rmjm/1022009276, Rocky Mt. J. Math. 30 (2000), 477-496. (2000) Zbl1034.28008MR1786993DOI10.1216/rmjm/1022009276
  13. Chung, D. M., 10.2140/pjm.1987.130.27, Pac. J. Math. 130 (1987), 27-40. (1987) Zbl0634.28007MR0910652DOI10.2140/pjm.1987.130.27
  14. Chung, D. M., Kang, S. J., Conditional Wiener integrals and an integral equation, J. Korean Math. Soc. 25 (1988), 37-52. (1988) Zbl0655.28008MR0950810
  15. Chung, D. M., Kang, S. J., 10.1080/07362998908809173, Stochastic Anal. Appl. 7 (1989), 125-144. (1989) Zbl0673.60006MR0997275DOI10.1080/07362998908809173
  16. Chung, D. M., Kang, S. J., Evaluation of some conditional abstract Wiener integrals, Bull. Korean Math. Soc. 26 (1989), 151-158. (1989) Zbl0692.28006MR1028364
  17. Chung, D. M., Kang, S. J., Evaluation formulas for conditional abstract Wiener integrals. II, J. Korean Math. Soc. 27 (1990), 137-144. (1990) Zbl0719.60008MR1087416
  18. Chung, D. M., Park, C., Skoug, D., 10.1307/mmj/1029004758, Mich. Math. J. 40 (1993), 377-391. (1993) Zbl0799.60049MR1226837DOI10.1307/mmj/1029004758
  19. Chung, D. M., Skoug, D., 10.1137/0520064, SIAM J. Math. Anal. 20 (1989), 950-965. (1989) Zbl0678.28007MR1000731DOI10.1137/0520064
  20. Cohn, D. L., 10.1007/978-1-4614-6956-8, Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäu-ser, New York (2013). (2013) Zbl1292.28002MR3098996DOI10.1007/978-1-4614-6956-8
  21. Doob, J. L., Stochastic Processes, John Wiley, New York (1953). (1953) Zbl0053.26802MR0058896
  22. Gross, L., Abstract Wiener spaces, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 2. Contributions to Probability Theory, Part 1 University of California Press, Berkeley (1967), 31-42. (1967) Zbl0187.40903MR0212152
  23. Gross, L., 10.1016/0022-1236(67)90030-4, J. Funct. Anal. 1 (1967), 123-181. (1967) Zbl0165.16403MR0227747DOI10.1016/0022-1236(67)90030-4
  24. Huffman, T., Park, C., Skoug, D., 10.1090/S0002-9947-1995-1242088-7, Trans. Am. Math. Soc. 347 (1995), 661-673. (1995) Zbl0880.28011MR1242088DOI10.1090/S0002-9947-1995-1242088-7
  25. Huffman, T., Park, C., Skoug, D., 10.1307/mmj/1029005461, Mich. Math. J. 43 (1996), 247-261. (1996) Zbl0864.28007MR1398153DOI10.1307/mmj/1029005461
  26. Huffman, T., Park, C., Skoug, D., 10.1216/rmjm/1181071896, Rocky Mt. J. Math. 27 (1997), 827-841. (1997) Zbl0901.28010MR1490278DOI10.1216/rmjm/1181071896
  27. Huffman, T., Park, C., Skoug, D., 10.1155/S0161171297000045, Int. J. Math. Math. Sci. 20 (1997), 19-32. (1997) Zbl0982.28011MR1431419DOI10.1155/S0161171297000045
  28. Huffman, T., Skoug, D., Storvick, D., Integration formulas involving Fourier-Feynman transforms via a Fubini theorem, J. Korean Math. Soc. 38 (2001), 421-435. (2001) Zbl1034.28009MR1817629
  29. Johnson, G. W., Skoug, D. L., 10.1016/0022-247X(75)90017-7, J. Math. Anal. Appl. 50 (1975), 647-667. (1975) Zbl0308.28006MR0374368DOI10.1016/0022-247X(75)90017-7
  30. Johnson, G. W., Skoug, D. L., 10.1017/S0027763000017189, Nagoya Math. J. 60 (1976), 93-137. (1976) Zbl0314.28010MR0407228DOI10.1017/S0027763000017189
  31. Johnson, G. W., Skoug, D. L., 10.1307/mmj/1029002166, Mich. Math. J. 26 (1979), 103-127. (1979) Zbl0409.28007MR0514964DOI10.1307/mmj/1029002166
  32. Johnson, G. W., Skoug, D. L., 10.2140/pjm.1983.105.321, Pac. J. Math. 105 (1983), 321-358. (1983) Zbl0459.28013MR0691608DOI10.2140/pjm.1983.105.321
  33. Kac, M., 10.1090/S0002-9947-1949-0027960-X, Trans. Am. Math. Soc. 65 (1949), 1-13. (1949) Zbl0032.03501MR0027960DOI10.1090/S0002-9947-1949-0027960-X
  34. Kallianpur, G., Bromley, C., Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic Analysis and Applications Advances in Probability and Related Topics 7. Marcel Dekker, New York (1984), 217-267. (1984) Zbl0554.60061MR0776983
  35. Kallianpur, G., Kannan, D., Karandikar, R. L., Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula, Ann. Inst. Henri Poincaré, Probab. Stat. 21 (1985), 323-361. (1985) Zbl0583.60049MR0823080
  36. Kim, B. S., Yoo, I., Cho, D. H., 10.2478/s11533-010-0019-2, Cent. Eur. J. Math. 8 (2010), 616-632. (2010) Zbl1204.28022MR2653665DOI10.2478/s11533-010-0019-2
  37. Kuo, H.-H., 10.1007/BFb0082007, Lecture Notes in Mathematics 463. Springer, Berlin (1975). (1975) Zbl0306.28010MR0461643DOI10.1007/BFb0082007
  38. Kuo, H.-H., 10.1007/0-387-31057-6, Universitext. Springer, New York (2006). (2006) Zbl1101.60001MR2180429DOI10.1007/0-387-31057-6
  39. Paley, R. E. A. C., Wiener, N., Zygmund, A., 10.1007/BF01474606, Math. Z. 37 (1933), 647-668. (1933) Zbl0007.35402MR1545426DOI10.1007/BF01474606
  40. Park, C., 10.1090/S0002-9939-1969-0245752-1, Proc. Am. Math. Soc. 23 (1969), 388-400. (1969) Zbl0186.20602MR0245752DOI10.1090/S0002-9939-1969-0245752-1
  41. Park, C., Skoug, D., 10.1090/S0002-9939-1988-0943089-8, Proc. Am. Math. Soc. 103 (1988), 591-601. (1988) Zbl0662.60063MR0943089DOI10.1090/S0002-9939-1988-0943089-8
  42. Park, C., Skoug, D., 10.2140/pjm.1988.135.381, Pac. J. Math. 135 (1988), 381-394. (1988) Zbl0655.28007MR0968620DOI10.2140/pjm.1988.135.381
  43. Park, C., Skoug, D., 10.1216/jiea/1181075633, J. Integral Equations Appl. 3 (1991), 411-427. (1991) Zbl0751.45003MR1142961DOI10.1216/jiea/1181075633
  44. Park, C., Skoug, D., 10.2140/pjm.1995.167.293, Pac. J. Math. 167 (1995), 293-312. (1995) Zbl0868.28007MR1328331DOI10.2140/pjm.1995.167.293
  45. Park, C., Skoug, D., Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), 61-76. (2001) Zbl1015.28016MR1808662
  46. Park, C., Skoug, D., Storvick, D., 10.1007/BF02844368, Rend. Circ. Mat. Palermo, II. Ser. 47 (1998), 277-292. (1998) Zbl0907.28008MR1633487DOI10.1007/BF02844368
  47. Park, C., Skoug, D., Storvick, D., 10.1216/rmjm/1181071725, Rocky Mt. J. Math. 28 (1998), 1447-1468. (1998) Zbl0934.28008MR1681677DOI10.1216/rmjm/1181071725
  48. Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
  49. Skoug, D., Storvick, D., 10.1216/rmjm/1181069848, Rocky Mt. J. Math. 34 (2004), 1147-1175. (2004) Zbl1172.42308MR2087452DOI10.1216/rmjm/1181069848
  50. Tucker, H. G., A Graduate Course in Probability, Probability and Mathematical Statistics 2. Academic Press, New York (1967). (1967) Zbl0159.45702MR0221541
  51. Yeh, J., Stochastic Processes and the Wiener Integral, Pure and Applied Mathematics 13. Marcel Dekker, New York (1973). (1973) Zbl0277.60018MR0474528
  52. Yeh, J., 10.2140/pjm.1974.52.631, Pac. J. Math. 52 (1974), 631-640. (1974) Zbl0323.60003MR0365644DOI10.2140/pjm.1974.52.631
  53. Yeh, J., 10.2140/pjm.1975.59.623, Pac. J. Math. 59 (1975), 623-638. (1975) Zbl0365.60073MR0390162DOI10.2140/pjm.1975.59.623

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.