Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 849-868
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChoi, Jae Gil, and Shim, Sang Kil. "Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space." Czechoslovak Mathematical Journal 73.3 (2023): 849-868. <http://eudml.org/doc/299121>.
@article{Choi2023,
abstract = {We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space $(H,B,\nu )$. An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space $B$. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class $\mathcal \{F\}(B)$ and we finally investigate some Fubini theorems involving CFFT.},
author = {Choi, Jae Gil, Shim, Sang Kil},
journal = {Czechoslovak Mathematical Journal},
keywords = {abstract Wiener space; conditional Wiener integral; conditional Fourier-Feynman transform; Fubini theorem},
language = {eng},
number = {3},
pages = {849-868},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space},
url = {http://eudml.org/doc/299121},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Choi, Jae Gil
AU - Shim, Sang Kil
TI - Conditional Fourier-Feynman transform given infinite dimensional conditioning function on abstract Wiener space
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 849
EP - 868
AB - We study a conditional Fourier-Feynman transform (CFFT) of functionals on an abstract Wiener space $(H,B,\nu )$. An infinite dimensional conditioning function is used to define the CFFT. To do this, we first present a short survey of the conditional Wiener integral concerning the topic of this paper. We then establish evaluation formulas for the conditional Wiener integral on the abstract Wiener space $B$. Using the evaluation formula, we next provide explicit formulas for CFFTs of functionals in the Kallianpur and Bromley Fresnel class $\mathcal {F}(B)$ and we finally investigate some Fubini theorems involving CFFT.
LA - eng
KW - abstract Wiener space; conditional Wiener integral; conditional Fourier-Feynman transform; Fubini theorem
UR - http://eudml.org/doc/299121
ER -
References
top- Ahn, J. M., Chang, K. S., Kim, B. S., Yoo, I., 10.1023/A:1025041525913, Acta. Math. Hung. 100 (2003), 215-235. (2003) Zbl1096.28009MR1990183DOI10.1023/A:1025041525913
- Breiman, L., Probability, Addison-Wesley Series in Statistics. Addison-Wesley, Reading (1968). (1968) Zbl0174.48801MR0229267
- Brue, M. D., A Functional Transform for Feynman Integrals Similar to the Fourier Transform: Ph. D. Thesis, University of Minnesota, Minneapolis (1972). (1972) MR2622178
- Cameron, R. H., Storvick, D. A., 10.1512/iumj.1969.18.18041, J. Math. Mech. 18 (1968), 517-552. (1968) Zbl0186.20701MR0236347DOI10.1512/iumj.1969.18.18041
- Cameron, R. H., Storvick, D. A., 10.1515/9781400869312-012, Problems in Analysis Princeton University Press, Princeton (1970), 175-193. (1970) Zbl0215.19101MR0348071DOI10.1515/9781400869312-012
- Cameron, R. H., Storvick, D. A., 10.1112/plms/s3-27.2.345, Proc. Lond. Math. Soc., Ser. III 27 (1973), 345-360. (1973) Zbl0264.28005MR0342674DOI10.1112/plms/s3-27.2.345
- Cameron, R. H., Storvick, D. A., 10.1016/0022-247X(73)90142-X, J. Math. Anal. Appl. 42 (1973), 330-372. (1973) Zbl0256.46055MR0320264DOI10.1016/0022-247X(73)90142-X
- Cameron, R. H., Storvick, D. A., 10.1307/mmj/1029001617, Mich. Math. J. 23 (1976), 1-30. (1976) Zbl0382.42008MR0404571DOI10.1307/mmj/1029001617
- Chang, K. S., Chang, J. S., Evaluation of some conditional Wiener integrals, Bull. Korean Math. Soc. 21 (1984), 99-106. (1984) Zbl0576.28023MR0768465
- Chang, K. S., Kim, B. S., Yoo, I., 10.1080/10652460008819285, Integral Transforms Spec. Funct. 10 (2000), 179-200. (2000) Zbl0973.28011MR1811008DOI10.1080/10652460008819285
- Chang, K. S., Song, T. S., Yoo, I., Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), 485-501. (2001) Zbl1033.28007MR1817632
- Chang, S. J., Park, C., Skoug, D., 10.1216/rmjm/1022009276, Rocky Mt. J. Math. 30 (2000), 477-496. (2000) Zbl1034.28008MR1786993DOI10.1216/rmjm/1022009276
- Chung, D. M., 10.2140/pjm.1987.130.27, Pac. J. Math. 130 (1987), 27-40. (1987) Zbl0634.28007MR0910652DOI10.2140/pjm.1987.130.27
- Chung, D. M., Kang, S. J., Conditional Wiener integrals and an integral equation, J. Korean Math. Soc. 25 (1988), 37-52. (1988) Zbl0655.28008MR0950810
- Chung, D. M., Kang, S. J., 10.1080/07362998908809173, Stochastic Anal. Appl. 7 (1989), 125-144. (1989) Zbl0673.60006MR0997275DOI10.1080/07362998908809173
- Chung, D. M., Kang, S. J., Evaluation of some conditional abstract Wiener integrals, Bull. Korean Math. Soc. 26 (1989), 151-158. (1989) Zbl0692.28006MR1028364
- Chung, D. M., Kang, S. J., Evaluation formulas for conditional abstract Wiener integrals. II, J. Korean Math. Soc. 27 (1990), 137-144. (1990) Zbl0719.60008MR1087416
- Chung, D. M., Park, C., Skoug, D., 10.1307/mmj/1029004758, Mich. Math. J. 40 (1993), 377-391. (1993) Zbl0799.60049MR1226837DOI10.1307/mmj/1029004758
- Chung, D. M., Skoug, D., 10.1137/0520064, SIAM J. Math. Anal. 20 (1989), 950-965. (1989) Zbl0678.28007MR1000731DOI10.1137/0520064
- Cohn, D. L., 10.1007/978-1-4614-6956-8, Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäu-ser, New York (2013). (2013) Zbl1292.28002MR3098996DOI10.1007/978-1-4614-6956-8
- Doob, J. L., Stochastic Processes, John Wiley, New York (1953). (1953) Zbl0053.26802MR0058896
- Gross, L., Abstract Wiener spaces, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 2. Contributions to Probability Theory, Part 1 University of California Press, Berkeley (1967), 31-42. (1967) Zbl0187.40903MR0212152
- Gross, L., 10.1016/0022-1236(67)90030-4, J. Funct. Anal. 1 (1967), 123-181. (1967) Zbl0165.16403MR0227747DOI10.1016/0022-1236(67)90030-4
- Huffman, T., Park, C., Skoug, D., 10.1090/S0002-9947-1995-1242088-7, Trans. Am. Math. Soc. 347 (1995), 661-673. (1995) Zbl0880.28011MR1242088DOI10.1090/S0002-9947-1995-1242088-7
- Huffman, T., Park, C., Skoug, D., 10.1307/mmj/1029005461, Mich. Math. J. 43 (1996), 247-261. (1996) Zbl0864.28007MR1398153DOI10.1307/mmj/1029005461
- Huffman, T., Park, C., Skoug, D., 10.1216/rmjm/1181071896, Rocky Mt. J. Math. 27 (1997), 827-841. (1997) Zbl0901.28010MR1490278DOI10.1216/rmjm/1181071896
- Huffman, T., Park, C., Skoug, D., 10.1155/S0161171297000045, Int. J. Math. Math. Sci. 20 (1997), 19-32. (1997) Zbl0982.28011MR1431419DOI10.1155/S0161171297000045
- Huffman, T., Skoug, D., Storvick, D., Integration formulas involving Fourier-Feynman transforms via a Fubini theorem, J. Korean Math. Soc. 38 (2001), 421-435. (2001) Zbl1034.28009MR1817629
- Johnson, G. W., Skoug, D. L., 10.1016/0022-247X(75)90017-7, J. Math. Anal. Appl. 50 (1975), 647-667. (1975) Zbl0308.28006MR0374368DOI10.1016/0022-247X(75)90017-7
- Johnson, G. W., Skoug, D. L., 10.1017/S0027763000017189, Nagoya Math. J. 60 (1976), 93-137. (1976) Zbl0314.28010MR0407228DOI10.1017/S0027763000017189
- Johnson, G. W., Skoug, D. L., 10.1307/mmj/1029002166, Mich. Math. J. 26 (1979), 103-127. (1979) Zbl0409.28007MR0514964DOI10.1307/mmj/1029002166
- Johnson, G. W., Skoug, D. L., 10.2140/pjm.1983.105.321, Pac. J. Math. 105 (1983), 321-358. (1983) Zbl0459.28013MR0691608DOI10.2140/pjm.1983.105.321
- Kac, M., 10.1090/S0002-9947-1949-0027960-X, Trans. Am. Math. Soc. 65 (1949), 1-13. (1949) Zbl0032.03501MR0027960DOI10.1090/S0002-9947-1949-0027960-X
- Kallianpur, G., Bromley, C., Generalized Feynman integrals using analytic continuation in several complex variables, Stochastic Analysis and Applications Advances in Probability and Related Topics 7. Marcel Dekker, New York (1984), 217-267. (1984) Zbl0554.60061MR0776983
- Kallianpur, G., Kannan, D., Karandikar, R. L., Analytic and sequential Feynman integrals on abstract Wiener and Hilbert spaces, and a Cameron-Martin formula, Ann. Inst. Henri Poincaré, Probab. Stat. 21 (1985), 323-361. (1985) Zbl0583.60049MR0823080
- Kim, B. S., Yoo, I., Cho, D. H., 10.2478/s11533-010-0019-2, Cent. Eur. J. Math. 8 (2010), 616-632. (2010) Zbl1204.28022MR2653665DOI10.2478/s11533-010-0019-2
- Kuo, H.-H., 10.1007/BFb0082007, Lecture Notes in Mathematics 463. Springer, Berlin (1975). (1975) Zbl0306.28010MR0461643DOI10.1007/BFb0082007
- Kuo, H.-H., 10.1007/0-387-31057-6, Universitext. Springer, New York (2006). (2006) Zbl1101.60001MR2180429DOI10.1007/0-387-31057-6
- Paley, R. E. A. C., Wiener, N., Zygmund, A., 10.1007/BF01474606, Math. Z. 37 (1933), 647-668. (1933) Zbl0007.35402MR1545426DOI10.1007/BF01474606
- Park, C., 10.1090/S0002-9939-1969-0245752-1, Proc. Am. Math. Soc. 23 (1969), 388-400. (1969) Zbl0186.20602MR0245752DOI10.1090/S0002-9939-1969-0245752-1
- Park, C., Skoug, D., 10.1090/S0002-9939-1988-0943089-8, Proc. Am. Math. Soc. 103 (1988), 591-601. (1988) Zbl0662.60063MR0943089DOI10.1090/S0002-9939-1988-0943089-8
- Park, C., Skoug, D., 10.2140/pjm.1988.135.381, Pac. J. Math. 135 (1988), 381-394. (1988) Zbl0655.28007MR0968620DOI10.2140/pjm.1988.135.381
- Park, C., Skoug, D., 10.1216/jiea/1181075633, J. Integral Equations Appl. 3 (1991), 411-427. (1991) Zbl0751.45003MR1142961DOI10.1216/jiea/1181075633
- Park, C., Skoug, D., 10.2140/pjm.1995.167.293, Pac. J. Math. 167 (1995), 293-312. (1995) Zbl0868.28007MR1328331DOI10.2140/pjm.1995.167.293
- Park, C., Skoug, D., Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), 61-76. (2001) Zbl1015.28016MR1808662
- Park, C., Skoug, D., Storvick, D., 10.1007/BF02844368, Rend. Circ. Mat. Palermo, II. Ser. 47 (1998), 277-292. (1998) Zbl0907.28008MR1633487DOI10.1007/BF02844368
- Park, C., Skoug, D., Storvick, D., 10.1216/rmjm/1181071725, Rocky Mt. J. Math. 28 (1998), 1447-1468. (1998) Zbl0934.28008MR1681677DOI10.1216/rmjm/1181071725
- Rudin, W., Real and Complex Analysis, McGraw-Hill, New York (1987). (1987) Zbl0925.00005MR0924157
- Skoug, D., Storvick, D., 10.1216/rmjm/1181069848, Rocky Mt. J. Math. 34 (2004), 1147-1175. (2004) Zbl1172.42308MR2087452DOI10.1216/rmjm/1181069848
- Tucker, H. G., A Graduate Course in Probability, Probability and Mathematical Statistics 2. Academic Press, New York (1967). (1967) Zbl0159.45702MR0221541
- Yeh, J., Stochastic Processes and the Wiener Integral, Pure and Applied Mathematics 13. Marcel Dekker, New York (1973). (1973) Zbl0277.60018MR0474528
- Yeh, J., 10.2140/pjm.1974.52.631, Pac. J. Math. 52 (1974), 631-640. (1974) Zbl0323.60003MR0365644DOI10.2140/pjm.1974.52.631
- Yeh, J., 10.2140/pjm.1975.59.623, Pac. J. Math. 59 (1975), 623-638. (1975) Zbl0365.60073MR0390162DOI10.2140/pjm.1975.59.623
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.