Some results on multi-valued weakly jungck mappings in b-metric space

Memudu Olatinwo

Open Mathematics (2008)

  • Volume: 6, Issue: 4, page 610-621
  • ISSN: 2391-5455

Abstract

top
In this paper, the concept of multi-valued weak contraction of Berinde and Berinde [8] for the Picard iteration in a complete metric space is extended to the case of multi-valued weak contraction for the Jungck iteration in a complete b-metric space. While our main results generalize the recent results of Berinde and Berinde [8], they also extend, improve and unify several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Our results also improve the recent results of Daffer and Kaneko [16].

How to cite

top

Memudu Olatinwo. "Some results on multi-valued weakly jungck mappings in b-metric space." Open Mathematics 6.4 (2008): 610-621. <http://eudml.org/doc/269398>.

@article{MemuduOlatinwo2008,
abstract = {In this paper, the concept of multi-valued weak contraction of Berinde and Berinde [8] for the Picard iteration in a complete metric space is extended to the case of multi-valued weak contraction for the Jungck iteration in a complete b-metric space. While our main results generalize the recent results of Berinde and Berinde [8], they also extend, improve and unify several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Our results also improve the recent results of Daffer and Kaneko [16].},
author = {Memudu Olatinwo},
journal = {Open Mathematics},
keywords = {multi-valued weak contraction; single-valued contractive mappings; -metric space},
language = {eng},
number = {4},
pages = {610-621},
title = {Some results on multi-valued weakly jungck mappings in b-metric space},
url = {http://eudml.org/doc/269398},
volume = {6},
year = {2008},
}

TY - JOUR
AU - Memudu Olatinwo
TI - Some results on multi-valued weakly jungck mappings in b-metric space
JO - Open Mathematics
PY - 2008
VL - 6
IS - 4
SP - 610
EP - 621
AB - In this paper, the concept of multi-valued weak contraction of Berinde and Berinde [8] for the Picard iteration in a complete metric space is extended to the case of multi-valued weak contraction for the Jungck iteration in a complete b-metric space. While our main results generalize the recent results of Berinde and Berinde [8], they also extend, improve and unify several classical results pertainning to single and multi-valued contractive mappings in the fixed point theory. Our results also improve the recent results of Daffer and Kaneko [16].
LA - eng
KW - multi-valued weak contraction; single-valued contractive mappings; -metric space
UR - http://eudml.org/doc/269398
ER -

References

top
  1. [1] Agarwal R.P., Meehan M., O’Regan D., Fixed point theory and applications, Cambridge University Press, Cambridge, 2001 
  2. [2] Banach S., Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 1922, 3, 133–181 (in French) Zbl48.0201.01
  3. [3] Berinde V., A priori and a posteriori error estimates for a class of ϕ-contractions, Bulletins for Applied & Computing Math., 1999, 183–192 
  4. [4] Berinde V., Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002 
  5. [5] Berinde V., On the approximation of fixed points of weak ϕ-contractive operators, Fixed Point Theory, 2003, 4, 131–142 Zbl1065.47069
  6. [6] Berinde V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 2003, 19, 7–22 Zbl1114.47045
  7. [7] Berinde V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 2004, 9, 43–53 Zbl1078.47042
  8. [8] Berinde M., Berinde V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 2007, 326, 772–782 http://dx.doi.org/10.1016/j.jmaa.2006.03.016 Zbl1117.47039
  9. [9] Boyd D.W., Wong J.S.W., On nonlinear contractions, Proc. Amer. Math. Soc., 1969, 20, 458–464 http://dx.doi.org/10.2307/2035677 Zbl0175.44903
  10. [10] Browder F., Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 1965, 54, 1041–1044 http://dx.doi.org/10.1073/pnas.54.4.1041 Zbl0128.35801
  11. [11] Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1993, 1, 5–11 Zbl0849.54036
  12. [12] Czerwik S., Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 1998, 46, 263–276 Zbl0920.47050
  13. [13] Ciric L.B., Fixed point theory, contraction mapping principle, FME Press, Beograd, 2003 
  14. [14] Ciric L.B., Ume J.S., Common fixed point theorems for multi-valued non-self mappings, Publ. Math. Debrecen, 2002, 60, 359–371 Zbl1017.54011
  15. [15] Ciric L.B., Ume J.S., On the convergence of Ishikawa iterates to a common fixed point of multi-valued mappings, Demonstratio Math., 2003, 36, 951–956 Zbl1073.47061
  16. [16] Daffer P.Z., Kaneko H., Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl., 1995, 192, 655–666 http://dx.doi.org/10.1006/jmaa.1995.1194 Zbl0835.54028
  17. [17] Geraghty M.A., On contractive mappings, Proc. Amer. Math. Soc., 1973, 40, 604–608 http://dx.doi.org/10.2307/2039421 Zbl0245.54027
  18. [18] Goffman C., Pedrick G., First course in functional analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J. 1965 Zbl0122.11206
  19. [19] Itoh S., Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae, 1977, 18, 247–258 Zbl0359.54038
  20. [20] Joshi M.C., Bose R.K., Some topics in nonlinear functional analysis, John Wiley & Sons, Inc., New York, 1985 Zbl0596.47038
  21. [21] Kaneko H., A general principle for fixed points of contractive multivalued mappings, Math. Japon., 1986, 31, 407–411 Zbl0602.54048
  22. [22] Kaneko H., Generalized contractive multivalued mappings and their fixed points, Math. Japon., 1988, 33, 57–64 Zbl0647.54038
  23. [23] Khamsi M.A., Kirk W.A., An introduction to metric spaces and fixed point theory, Wiley-Interscience, New York, 2001 Zbl1318.47001
  24. [24] Kubiaczyk I., Ali N.M., On the convergence of the Ishikawa iterates to a common fixed point for a pair of multi-valued mappings, Acta Math. Hungar., 1997, 75, 253–257 http://dx.doi.org/10.1023/A:1006555406715 Zbl0892.47057
  25. [25] Lim T.C., On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 1985, 110, 436–441 http://dx.doi.org/10.1016/0022-247X(85)90306-3 
  26. [26] Markins J.T., A fixed point theorem for set-valued mappings, Bull. Amer. Math. Soc., 1968, 74, 639–640 http://dx.doi.org/10.1090/S0002-9904-1968-11971-8 Zbl0159.19903
  27. [27] Mizoguchi M., Takahashi W., Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl., 1989, 141, 177–188 http://dx.doi.org/10.1016/0022-247X(89)90214-X 
  28. [28] Nadler S.B., Multi-valued contraction mappings, Pacific J. Math., 1969, 30, 475–488 Zbl0187.45002
  29. [29] Olatinwo M.O., A generalization of some results on multi-valued weakly Picard mappings in b-metric space, preprint Zbl1177.54028
  30. [30] Picard E., Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J.Math. Pures et Appl., 1890, 6, 145–210 (in French) Zbl22.0357.02
  31. [31] Rhoades B.E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 1977, 226, 257–290 http://dx.doi.org/10.2307/1997954 Zbl0365.54023
  32. [32] Rhoades B.E., A fixed point theorem for a multivalued non-self mapping, Comment. Math. Univ. Carolin., 1996, 37, 401–404 Zbl0849.47032
  33. [33] Rhoades B.E., Watson B., Fixed points for set-valued mappings on metric spaces, Math. Japon., 1990, 35, 735–743 Zbl0728.54013
  34. [34] Rus I.A., Fixed point theorems for multi-valued mappings in complete metric spaces, Math. Japon., 1975, 20, 21–24 
  35. [35] Rus I.A., Generalized contractions and applications, Cluj University Press, Cluj Napoca, 2001 
  36. [36] Rus I.A., Petrusel A., Petrusel G., Fixed point theory: 1950-2000, Romanian Contributions, House of the Book of Science, Cluj Napoca, 2002 
  37. [37] Singh S.L., Bhatnagar C., Hashim A.M., Round-off stability of Picard iterative procedure for multivalued operators, Nonlinear Anal. Forum, 2005, 10, 13–19 Zbl1095.47508
  38. [38] Zeidler E., Nonlinear functional analysis and its applications-fixed point theorems, Springer-Verlag, New York, Inc., 1986 Zbl0583.47050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.