Generalized dimension compression under mappings of exponentially integrable distortion

Aleksandra Zapadinskaya

Open Mathematics (2011)

  • Volume: 9, Issue: 2, page 356-363
  • ISSN: 2391-5455

Abstract

top
We prove a dimension compression estimate for homeomorphic mappings of exponentially integrable distortion via a modulus of continuity result by D. Herron and P. Koskela [Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259]. The essential sharpness of our estimate is demonstrated by an example.

How to cite

top

Aleksandra Zapadinskaya. "Generalized dimension compression under mappings of exponentially integrable distortion." Open Mathematics 9.2 (2011): 356-363. <http://eudml.org/doc/269401>.

@article{AleksandraZapadinskaya2011,
abstract = {We prove a dimension compression estimate for homeomorphic mappings of exponentially integrable distortion via a modulus of continuity result by D. Herron and P. Koskela [Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259]. The essential sharpness of our estimate is demonstrated by an example.},
author = {Aleksandra Zapadinskaya},
journal = {Open Mathematics},
keywords = {Mapping of finite distortion; Exponentially integrable distortion; Generalized Hausdorff measure; Hausdorff dimension; mapping of finite distortion; exponentially integrable distortion; generalized Hausdorff measure},
language = {eng},
number = {2},
pages = {356-363},
title = {Generalized dimension compression under mappings of exponentially integrable distortion},
url = {http://eudml.org/doc/269401},
volume = {9},
year = {2011},
}

TY - JOUR
AU - Aleksandra Zapadinskaya
TI - Generalized dimension compression under mappings of exponentially integrable distortion
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 356
EP - 363
AB - We prove a dimension compression estimate for homeomorphic mappings of exponentially integrable distortion via a modulus of continuity result by D. Herron and P. Koskela [Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259]. The essential sharpness of our estimate is demonstrated by an example.
LA - eng
KW - Mapping of finite distortion; Exponentially integrable distortion; Generalized Hausdorff measure; Hausdorff dimension; mapping of finite distortion; exponentially integrable distortion; generalized Hausdorff measure
UR - http://eudml.org/doc/269401
ER -

References

top
  1. [1] Astala K., Gill J.T., Rohde S., Saksman E., Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2010, 27(1), 1–19 http://dx.doi.org/10.1016/j.anihpc.2009.01.012 Zbl1191.30007
  2. [2] Astala K., Iwaniec T., Koskela P., Martin G., Mappings of BMO-bounded distortion, Math. Ann., 2000, 317(4), 703–726 http://dx.doi.org/10.1007/PL00004420 Zbl0954.30009
  3. [3] Astala K., Iwaniec T., Martin G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Math. Ser., 48, Princeton University Press, Princeton, 2009 Zbl1182.30001
  4. [4] Boyarskiĭ B.V., Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR (N.S.), 1955, 102, 661–664 
  5. [5] David G., Solutions de l’équation de Beltrami avec ‖µ‖∞ = 1, Ann. Acad. Sci. Fenn. Ser. A I Math., 1988, 13(1), 25–70 Zbl0619.30024
  6. [6] Falconer K., Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990 
  7. [7] Faraco D., Koskela P., Zhong X., Mappings of finite distortion: the degree of regularity, Adv. Math., 2005, 190(2), 300–318 http://dx.doi.org/10.1016/j.aim.2003.12.009 Zbl1075.30012
  8. [8] Gehring F.W., The L p-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 1973, 130(1), 265–277 http://dx.doi.org/10.1007/BF02392268 Zbl0258.30021
  9. [9] Herron D.A., Koskela P., Mappings of finite distortion: gauge dimension of generalized quasicircles, Illinois J. Math., 2003, 47(4), 1243–1259 Zbl1050.30012
  10. [10] Koskela P., Zapadinskaya A., Zürcher T., Mappings of finite distortion: generalized Hausdorff dimension distortion, J. Geom. Anal., 2010, 20(3), 690–704 http://dx.doi.org/10.1007/s12220-010-9121-8 Zbl1205.30017
  11. [11] Rajala T., Zapadinskaya A., Zürcher T., Generalized Hausdorff dimension distortion in Euclidean spaces under Sobolev mappings, preprint available at http://arxiv.org/abs/1007.2091 Zbl1252.46024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.