On equivalences of derived and singular categories

Vladimir Baranovsky; Jeremy Pecharich

Open Mathematics (2010)

  • Volume: 8, Issue: 1, page 1-14
  • ISSN: 2391-5455

Abstract

top
Let X and Y be two smooth Deligne-Mumford stacks and consider a pair of functions f: X → 𝔸 1 , g:Y → 𝔸 1 . Assuming that there exists a complex of sheaves on X × 𝔸 1 Y which induces an equivalence of D b(X) and D b(Y), we show that there is also an equivalence of the singular derived categories of the fibers f −1(0) and g −1(0). We apply this statement in the setting of McKay correspondence, and generalize a theorem of Orlov on the derived category of a Calabi-Yau hypersurface in a weighted projective space, to products of Calabi-Yau hypersurfaces in simplicial toric varieties with nef anticanonical class.

How to cite

top

Vladimir Baranovsky, and Jeremy Pecharich. "On equivalences of derived and singular categories." Open Mathematics 8.1 (2010): 1-14. <http://eudml.org/doc/269404>.

@article{VladimirBaranovsky2010,
abstract = {Let X and Y be two smooth Deligne-Mumford stacks and consider a pair of functions f: X → \[ \mathbb \{A\}^1 \] , g:Y → \[ \mathbb \{A\}^1 \] . Assuming that there exists a complex of sheaves on X × \[ \mathbb \{A\}^1 \] Y which induces an equivalence of D b(X) and D b(Y), we show that there is also an equivalence of the singular derived categories of the fibers f −1(0) and g −1(0). We apply this statement in the setting of McKay correspondence, and generalize a theorem of Orlov on the derived category of a Calabi-Yau hypersurface in a weighted projective space, to products of Calabi-Yau hypersurfaces in simplicial toric varieties with nef anticanonical class.},
author = {Vladimir Baranovsky, Jeremy Pecharich},
journal = {Open Mathematics},
keywords = {Derived category; Singular category; Landau-Ginzburg model; McKay correspondence; derived category; singular category},
language = {eng},
number = {1},
pages = {1-14},
title = {On equivalences of derived and singular categories},
url = {http://eudml.org/doc/269404},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Vladimir Baranovsky
AU - Jeremy Pecharich
TI - On equivalences of derived and singular categories
JO - Open Mathematics
PY - 2010
VL - 8
IS - 1
SP - 1
EP - 14
AB - Let X and Y be two smooth Deligne-Mumford stacks and consider a pair of functions f: X → \[ \mathbb {A}^1 \] , g:Y → \[ \mathbb {A}^1 \] . Assuming that there exists a complex of sheaves on X × \[ \mathbb {A}^1 \] Y which induces an equivalence of D b(X) and D b(Y), we show that there is also an equivalence of the singular derived categories of the fibers f −1(0) and g −1(0). We apply this statement in the setting of McKay correspondence, and generalize a theorem of Orlov on the derived category of a Calabi-Yau hypersurface in a weighted projective space, to products of Calabi-Yau hypersurfaces in simplicial toric varieties with nef anticanonical class.
LA - eng
KW - Derived category; Singular category; Landau-Ginzburg model; McKay correspondence; derived category; singular category
UR - http://eudml.org/doc/269404
ER -

References

top
  1. [1] Ballard M., Equivalences of derived categories of sheaves on quasi-projective schemes, preprint available at http://arxiv.org/abs/0905.3148 
  2. [2] Bezrukavnikov R., Kaledin D., McKay equivalence for symplectic resolutions of singularities, preprint available at http://arxiv.org/abs/math/0401002 Zbl1137.14301
  3. [3] Bridgeland T., King A., Reid M., The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc., 2001, 14(3), 535–554 http://dx.doi.org/10.1090/S0894-0347-01-00368-X Zbl0966.14028
  4. [4] Chen J.-C., Flop sand equivalences of derived categories for three folds with only terminal Gorenstein singularities, J. Differential Geom., 2002, 61(2), 227–261 
  5. [5] Cox D., Little J., Schenck H., Toric varieties, book in preparation, available at http://www.cs.amherst.edu/_dac/toric.html Zbl1223.14001
  6. [6] Edidin D., Notes on the construction of the moduli space of curves, preprint available at http://arxiv.org/abs/math/9805101 
  7. [7] Fulton W., Introduction to toric varieties. Annals of Mathematics Studies, 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993 Zbl0813.14039
  8. [8] Fujino O., Sato H., Introduction to the toric Mori theory, Michigan Math. J., 2004, 52(3), 649–665 http://dx.doi.org/10.1307/mmj/1100623418 Zbl1078.14019
  9. [9] Hernández Ruiprez D., López Martín A.C., de Salas F.S., Fourier-Mukai transforms for Gorenstein schemes, Adv. Math., 2007, 211(2), 594–620 http://dx.doi.org/10.1016/j.aim.2006.09.006 Zbl1118.14022
  10. [10] Huybrechts D., Fourier-Mukai transforms in algebraic geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2006 http://dx.doi.org/10.1093/acprof:oso/9780199296866.001.0001 
  11. [11] Isik M.U., private communication 
  12. [12] Kawamata Y., Log crepant birational maps and derived categories, J. Math. Sci. Univ. Tokyo, 2005, 12(2), 211–231 Zbl1095.14014
  13. [13] Kawamata Y., Derived Categories and Birational Geometry, preprint available at http://arxiv.org/abs/0804.3150 Zbl1175.14009
  14. [14] Kresch A., On the geometry of Deligne-Mumford stacks, Algebraic geometry-Seattle 2005. Part 1, 259–271, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009 Zbl1169.14001
  15. [15] Kontsevich M., Homological algebra of mirror symmetry, In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 120–139 Zbl0846.53021
  16. [16] Kuznetsov A., Hyperplane sections and derived categories, Izv. Ross. Akad. Nauk Ser. Mat., 2006, 70(3), 23–128 (in Russian); English translation: Izv. Math., 2006, 70(3), 447–547 Zbl1133.14016
  17. [17] Laumon G., Moret-Bailly L., Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 39, Springer-Verlag, Berlin, 2000 
  18. [18] Matsuki K., Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002 Zbl0988.14007
  19. [19] Mehrotra S., Triangulated categories of singularities, matrix factorizations and LG models, PhD Thesis, University of Pennsylvania, Philadelphia, USA, 2005 
  20. [20] Neeman A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc., 1996, 9(1), 205–236 http://dx.doi.org/10.1090/S0894-0347-96-00174-9 Zbl0864.14008
  21. [21] Nironi F., Grothendieck Duality for Projective Deligne-Mumford Stacks, preprint available at http://arxiv.org/abs/0811.1955 
  22. [22] Orlov D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, preprint available at http://arxiv.org/abs/math/0302304 Zbl1101.81093
  23. [23] Orlov D., Derived categories of coherent sheaves and triangulated categories of singularities, preprint available at http://arxiv.org/abs/math/0503632 Zbl1200.18007
  24. [24] Quintero-Vélez A., McKay Correspondence for Landau-Ginzburg models, Commun. Number Theory Phys., 2009, 3(1), 173–208 Zbl1169.14011
  25. [25] Thomason R.W., Trobaugh T., Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, 247–435, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990 http://dx.doi.org/10.1007/978-0-8176-4576-2_10 
  26. [26] Vistoli A., Intersection theory on algebraic tacks and on their moduli spaces, Invent. Math., 1989, 97(3), 613–670 http://dx.doi.org/10.1007/BF01388892 Zbl0694.14001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.