On the Brill-Noether theory for K3 surfaces

Maxim Leyenson

Open Mathematics (2012)

  • Volume: 10, Issue: 4, page 1486-1540
  • ISSN: 2391-5455

Abstract

top
Let (S, H) be a polarized K3 surface. We define Brill-Noether filtration on moduli spaces of vector bundles on S. Assume that (c 1(E), H) > 0 for a sheaf E in the moduli space. We give a formula for the expected dimension of the Brill-Noether subschemes. Following the classical theory for curves, we give a notion of Brill-Noether generic K3 surfaces. Studying correspondences between moduli spaces of coherent sheaves of different ranks on S, we prove our main theorem: polarized K3 surface which is generic in the sense of moduli is also generic in the sense of Brill-Noether theory (here H is the positive generator of the Picard group of S). The harder part of the proof is proving the non-emptiness of the Brill-Noether loci. In the case of algebraic curves such a theorem, proved by Griffiths and Harris and, independently, by Lazarsfeld, is sometimes called the strong theorem of the Brill-Noether theory. We finish by considering a number of projective examples. In particular, we construct explicitly Brill-Noether special K3 surfaces of genus 5 and 6 and show the relation with the theory of Brill-Noether special curves.

How to cite

top

Maxim Leyenson. "On the Brill-Noether theory for K3 surfaces." Open Mathematics 10.4 (2012): 1486-1540. <http://eudml.org/doc/269408>.

@article{MaximLeyenson2012,
abstract = {Let (S, H) be a polarized K3 surface. We define Brill-Noether filtration on moduli spaces of vector bundles on S. Assume that (c 1(E), H) > 0 for a sheaf E in the moduli space. We give a formula for the expected dimension of the Brill-Noether subschemes. Following the classical theory for curves, we give a notion of Brill-Noether generic K3 surfaces. Studying correspondences between moduli spaces of coherent sheaves of different ranks on S, we prove our main theorem: polarized K3 surface which is generic in the sense of moduli is also generic in the sense of Brill-Noether theory (here H is the positive generator of the Picard group of S). The harder part of the proof is proving the non-emptiness of the Brill-Noether loci. In the case of algebraic curves such a theorem, proved by Griffiths and Harris and, independently, by Lazarsfeld, is sometimes called the strong theorem of the Brill-Noether theory. We finish by considering a number of projective examples. In particular, we construct explicitly Brill-Noether special K3 surfaces of genus 5 and 6 and show the relation with the theory of Brill-Noether special curves.},
author = {Maxim Leyenson},
journal = {Open Mathematics},
keywords = {Algebraic surfaces; K3 surfaces; Vector bundles; surfaces; correspondences between surfaces; moduli spaces of sheaves on surfaces; Brill-Noether loci},
language = {eng},
number = {4},
pages = {1486-1540},
title = {On the Brill-Noether theory for K3 surfaces},
url = {http://eudml.org/doc/269408},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Maxim Leyenson
TI - On the Brill-Noether theory for K3 surfaces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 4
SP - 1486
EP - 1540
AB - Let (S, H) be a polarized K3 surface. We define Brill-Noether filtration on moduli spaces of vector bundles on S. Assume that (c 1(E), H) > 0 for a sheaf E in the moduli space. We give a formula for the expected dimension of the Brill-Noether subschemes. Following the classical theory for curves, we give a notion of Brill-Noether generic K3 surfaces. Studying correspondences between moduli spaces of coherent sheaves of different ranks on S, we prove our main theorem: polarized K3 surface which is generic in the sense of moduli is also generic in the sense of Brill-Noether theory (here H is the positive generator of the Picard group of S). The harder part of the proof is proving the non-emptiness of the Brill-Noether loci. In the case of algebraic curves such a theorem, proved by Griffiths and Harris and, independently, by Lazarsfeld, is sometimes called the strong theorem of the Brill-Noether theory. We finish by considering a number of projective examples. In particular, we construct explicitly Brill-Noether special K3 surfaces of genus 5 and 6 and show the relation with the theory of Brill-Noether special curves.
LA - eng
KW - Algebraic surfaces; K3 surfaces; Vector bundles; surfaces; correspondences between surfaces; moduli spaces of sheaves on surfaces; Brill-Noether loci
UR - http://eudml.org/doc/269408
ER -

References

top
  1. [1] Arbarello E., Cornalba M., Griffiths P.A., Harris J., Geometry of Algebraic Curves. I, Grundlehren Math. Wiss., 267, Springer, New York, 1985 Zbl0559.14017
  2. [2] Brill A., Nöther M., Ueber die algebraischen Functionen und ihre Anwendugen in der Geometrie, Math. Ann., 1874, 7(2–3), 269–310 http://dx.doi.org/10.1007/BF02104804 
  3. [3] Fulton W., Intersection Theory, Ergeb. Math. Grenzgeb., 2, Springer, Berlin, 1984 Zbl0541.14005
  4. [4] Green M., Lazarsfeld R., A simple proof of Petri’s theorem on canonical curves, In: Geometry Today, Rome, June 4–11, 1984, Progr. Math., 60, Birkhäuser, Boston, 129–142 Zbl0577.14018
  5. [5] Griffiths P., Harris J., On the variety of special linear systems on a general algebraic curve, Duke Math. J., 1980, 47(1), 233–272 http://dx.doi.org/10.1215/S0012-7094-80-04717-1 Zbl0446.14011
  6. [6] Griffiths P., Harris J., Principles of Algebraic Geometry, Wiley Classics Lib., John Wiley & Sons, New York, 1994 Zbl0836.14001
  7. [7] Grothendieck A., Eléments de Géométrie Algébrique. I. Le Langage des Schémas, Inst. Hautes Études Sci. Publ. Math., 4, Presses Universitaires de France, Paris, 1960 
  8. [8] Grothendieck A., Eléments de Géométrie Algébrique. IV. Étude Locale des Schémas et des Morphismes de Schémas I, Inst. Hautes Études Sci. Publ. Math., 20, Presses Universitaires de France, Paris, 1964 
  9. [9] Grothendieck A., Technique de descente et théorèmes d’existence en géométrie algébrique. V. Les schémas de Picard: theórèmes d’existence, In: Séminaire Bourbaki, 7(232), Société Mathématique de France, Paris, 1995, 143–161 Zbl0238.14014
  10. [10] He M., Espaces de modules de systèmes cohérents. I. Normalité, C. R. Acad. Sci. Paris Sér. I Math., 1997, 325(2), 183–188 http://dx.doi.org/10.1016/S0764-4442(97)84596-X 
  11. [11] He M., Espaces de modules de systèmes cohérents. II. Nombres de Donaldson, C. R. Acad. Sci. Paris Sér. I Math., 1997, 325(3), 301–306 http://dx.doi.org/10.1016/S0764-4442(97)83960-2 
  12. [12] He M., Espaces de modules de systèmes cohérents, Internat. J. Math., 1998, 9(5), 545–598 http://dx.doi.org/10.1142/S0129167X98000257 
  13. [13] Huybrechts D., Lehn M., The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Math. Lib., Cambridge University Press, Cambridge, 2010 http://dx.doi.org/10.1017/CBO9780511711985 Zbl1206.14027
  14. [14] Lazarsfeld R., Brill-Noether-Petri without degenerations, J. Differential Geom., 1986, 23(3), 299–307 Zbl0608.14026
  15. [15] Le Potier J., Systèmes Cohérents et Structures de Niveau, Astérisque, 214, Société Mathématique de France, Paris, 1993 
  16. [16] Leyenson M., On the Brill-Noether theory for K3 surfaces II, preprint available at http://arxiv.org/abs/math/0602358 
  17. [17] Maruyama M., Construction of moduli spaces of stable sheaves via Simpson’s idea, In: Moduli of Vector Bundles, Sanda, Kyoto, 1994, Lecture Notes in Pure and Appl. Math., 179, Dekker, New York, 1996, 147–187 
  18. [18] Mukai S., Symplectic structure of the moduli space of sheaves on an abelian or K3 surface, Invent. Math., 1984, 77(1), 101–116 http://dx.doi.org/10.1007/BF01389137 Zbl0565.14002
  19. [19] Mukai S., On the moduli space of bundles on K3 surfaces, In: Vector Bundles on Algebraic Varieties, Bombay, January 9–16, 1984, Tata Inst. Fund. Res. Stud. Math., 11, Tata Institute of Fundamental Research, Clarendon Press, Oxford University Press, Bombay, New York, 1987, 341–413 
  20. [20] Mumford D., Lectures on Curves on an Algebraic Surface, Ann. of Math. Stud., 59, Princeton University Press, Princeton, 1966 Zbl0187.42701
  21. [21] Saint-Donat B., Projective models of K − 3 surfaces, Amer. J. Math., 1974, 96, 602–639 http://dx.doi.org/10.2307/2373709 Zbl0301.14011
  22. [22] Tyurin A.N., On the intersection of quadrics, Uspekhi Matem. Nauk, 1975, 6(186)(30), 51–99 (in Russian) Zbl0339.14020
  23. [23] Tyurin A.N., Cycles, curves and vector bundles on an algebraic surface, Duke Math. J., 1987, 54(1), 1–26 http://dx.doi.org/10.1215/S0012-7094-87-05402-0 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.