Combinatorial aspects of generalized complementary basic matrices

Miroslav Fiedler; Frank Hall

Open Mathematics (2013)

  • Volume: 11, Issue: 12, page 2186-2196
  • ISSN: 2391-5455

Abstract

top
This paper extends some properties of the generalized complementary basic matrices, in particular, in a combinatorial direction. These include inheritance (such as for Alternating Sign Matrices), spectral, and sign pattern matrix (including sign nonsingularity) properties.

How to cite

top

Miroslav Fiedler, and Frank Hall. "Combinatorial aspects of generalized complementary basic matrices." Open Mathematics 11.12 (2013): 2186-2196. <http://eudml.org/doc/269418>.

@article{MiroslavFiedler2013,
abstract = {This paper extends some properties of the generalized complementary basic matrices, in particular, in a combinatorial direction. These include inheritance (such as for Alternating Sign Matrices), spectral, and sign pattern matrix (including sign nonsingularity) properties.},
author = {Miroslav Fiedler, Frank Hall},
journal = {Open Mathematics},
keywords = {Factorization; CB-matrix; GCB-matrix; Inheritance properties; P-matrix; Alternating sign matrices; Spectral radius; Sign pattern matrix; factorization; -matrix; spectral radius; sign pattern matrix; generalized complementary basic matrices; alternating sign matrices},
language = {eng},
number = {12},
pages = {2186-2196},
title = {Combinatorial aspects of generalized complementary basic matrices},
url = {http://eudml.org/doc/269418},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Miroslav Fiedler
AU - Frank Hall
TI - Combinatorial aspects of generalized complementary basic matrices
JO - Open Mathematics
PY - 2013
VL - 11
IS - 12
SP - 2186
EP - 2196
AB - This paper extends some properties of the generalized complementary basic matrices, in particular, in a combinatorial direction. These include inheritance (such as for Alternating Sign Matrices), spectral, and sign pattern matrix (including sign nonsingularity) properties.
LA - eng
KW - Factorization; CB-matrix; GCB-matrix; Inheritance properties; P-matrix; Alternating sign matrices; Spectral radius; Sign pattern matrix; factorization; -matrix; spectral radius; sign pattern matrix; generalized complementary basic matrices; alternating sign matrices
UR - http://eudml.org/doc/269418
ER -

References

top
  1. [1] Brualdi R.A., Kiernan K.P., Meyer S.A., Schroeder M.W., Patterns of alternating sign matrices, Linear Algebra Appl., 2013, 438(10), 3967–3990 http://dx.doi.org/10.1016/j.laa.2012.03.009 Zbl1281.15034
  2. [2] Brualdi R.A., Ryser H.J., Combinatorial Matrix Theory, Encyclopedia Math. Appl., 39, Cambridge University Press, Cambridge, 1991 http://dx.doi.org/10.1017/CBO9781107325708 
  3. [3] Brualdi R.A., Shader B.L., Matrices of Sign-Solvable Linear Systems, Cambridge Tracts in Math., 116, Cambridge University Press, Cambridge, 1995 http://dx.doi.org/10.1017/CBO9780511574733 Zbl0833.15002
  4. [4] Chow T.S., A class of Hessenberg matrices with known eigenvalues and inverses, SIAM Rev., 1969, 11(3), 391–395 http://dx.doi.org/10.1137/1011065 Zbl0185.07803
  5. [5] Fiedler M., Complementary basic matrices, Linear Algebra Appl., 2004, 384, 199–206 http://dx.doi.org/10.1016/j.laa.2004.01.014 Zbl1059.15026
  6. [6] Fiedler M., Intrinsic products and factorizations of matrices, Linear Algebra Appl., 2008, 428(1), 5–13 http://dx.doi.org/10.1016/j.laa.2007.09.026 Zbl1135.15009
  7. [7] Fiedler M., Hall F.J., Some inheritance properties for complementary basic matrices, Linear Algebra Appl., 2010, 433(11–12), 2060–2069 http://dx.doi.org/10.1016/j.laa.2010.07.017 Zbl1254.15020
  8. [8] Fiedler M., Hall F.J., G-matrices, Linear Algebra Appl., 2012, 436(3), 731–741 http://dx.doi.org/10.1016/j.laa.2011.08.001 
  9. [9] Fiedler M., Hall F.J., A note on permanents and generalized complementary basic matrices, Linear Algebra Appl., 2012, 436(9), 3553–3569 http://dx.doi.org/10.1016/j.laa.2011.12.030 Zbl1241.15005
  10. [10] Fiedler M., Hall F.J., Some graph theoretic properties of generalized complementary basic matrices, Linear Algebra Appl., 2013, 438(8), 3365–3374 http://dx.doi.org/10.1016/j.laa.2012.12.028 Zbl1261.05055
  11. [11] Fiedler M., Hall F.J., Stroev M., Permanents, determinants, and generalized complementary basic matrices (manuscript) Zbl1314.15007
  12. [12] Gantmacher F.R., The Theory of Matrices II, Chelsea, New York, 1959 Zbl0085.01001
  13. [13] Hall F.J., Li Z., Sign Pattern Matrices, In: Handbook of Linear Algebra, Discrete Math. Appl. (Boca Raton), Chapman & Hall/CRC, Boca Raton, 2007 
  14. [14] Horn R.A., Johnson C.R., Matrix Analysis, 2nd ed., Cambridge University Press, Cambridge, 2013 Zbl1267.15001
  15. [15] Johnson C.R., Sign patterns of inverse nonnegative matrices, Linear Algebra Appl., 1983, 55, 69–80 http://dx.doi.org/10.1016/0024-3795(83)90166-0 
  16. [16] Mills W.H., Robbins D.P., Rumsey H. Jr., Alternating-sign matrices and descending plane partitions, J. Combin. Theory Ser. A, 1983, 34(3), 340–359 http://dx.doi.org/10.1016/0097-3165(83)90068-7 Zbl0516.05016
  17. [17] Seymour P.D., Decomposition of regular matroids, J. Comb. Theory Ser. B, 1980, 28(3), 305–359 http://dx.doi.org/10.1016/0095-8956(80)90075-1 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.