Seiberg-Witten invariants, the topological degree and wall crossing formula

Maciej Starostka

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 2129-2137
  • ISSN: 2391-5455

Abstract

top
Following S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.

How to cite

top

Maciej Starostka. "Seiberg-Witten invariants, the topological degree and wall crossing formula." Open Mathematics 10.6 (2012): 2129-2137. <http://eudml.org/doc/269419>.

@article{MaciejStarostka2012,
abstract = {Following S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.},
author = {Maciej Starostka},
journal = {Open Mathematics},
keywords = {Wall crossing formula; Seiberg-Witten invariants; Bauer-Furuta invariants; Monopole map; Topological degree; monopole map; topological degree},
language = {eng},
number = {6},
pages = {2129-2137},
title = {Seiberg-Witten invariants, the topological degree and wall crossing formula},
url = {http://eudml.org/doc/269419},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Maciej Starostka
TI - Seiberg-Witten invariants, the topological degree and wall crossing formula
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 2129
EP - 2137
AB - Following S. Bauer and M. Furuta we investigate finite dimensional approximations of a monopole map in the case b 1 = 0. We define a certain topological degree which is exactly equal to the Seiberg-Witten invariant. Using homotopy invariance of the topological degree a simple proof of the wall crossing formula is derived.
LA - eng
KW - Wall crossing formula; Seiberg-Witten invariants; Bauer-Furuta invariants; Monopole map; Topological degree; monopole map; topological degree
UR - http://eudml.org/doc/269419
ER -

References

top
  1. [1] Bauer S., Furuta M., A stable cohomotopy refinement of Seiberg-Witten invariants I, Invent. Math., 2004, 155(1), 1–19 http://dx.doi.org/10.1007/s00222-003-0288-5[Crossref] Zbl1050.57024
  2. [2] Bott R., Tu L.W., Differential Forms in Algebraic Topology, Grad. Texts in Math., 82, Springer, New York-Berlin, 1982 Zbl0496.55001
  3. [3] tom Dieck T., Transformation Groups, de Gruyter Stud. Math., 8, Walter de Gruyter, Berlin, 1987 http://dx.doi.org/10.1515/9783110858372[Crossref] 
  4. [4] Salamon D.A., Spin Geometry and Seiberg-Witten Invariants, unpublished manuscript 
  5. [5] Taubes C.H., Differential Geometry, Oxf. Grad. Texts Math., 23, Oxford University Press, New York, 2011 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.