Page 1 Next

Displaying 1 – 20 of 90

Showing per page

A counterexample to the smoothness of the solution to an equation arising in fluid mechanics

Stephen Montgomery-Smith, Milan Pokorný (2002)

Commentationes Mathematicae Universitatis Carolinae

We analyze the equation coming from the Eulerian-Lagrangian description of fluids. We discuss a couple of ways to extend this notion to viscous fluids. The main focus of this paper is to discuss the first way, due to Constantin. We show that this description can only work for short times, after which the ``back to coordinates map'' may have no smooth inverse. Then we briefly discuss a second way that uses Brownian motion. We use this to provide a plausibility argument for the global regularity for...

A Lefschetz-type coincidence theorem

Peter Saveliev (1999)

Fundamenta Mathematicae

A Lefschetz-type coincidence theorem for two maps f,g: X → Y from an arbitrary topological space to a manifold is given: I f g = λ f g , that is, the coincidence index is equal to the Lefschetz number. It follows that if λ f g 0 then there is an x ∈ X such that f(x) = g(x). In particular, the theorem contains well-known coincidence results for (i) X,Y manifolds, f boundary-preserving, and (ii) Y Euclidean, f with acyclic fibres. It also implies certain fixed point results for multivalued maps with “point-like” (acyclic)...

Currently displaying 1 – 20 of 90

Page 1 Next