Finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves
Open Mathematics (2009)
- Volume: 7, Issue: 4, page 606-616
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topCristian González-Avilés. "Finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves." Open Mathematics 7.4 (2009): 606-616. <http://eudml.org/doc/269438>.
@article{CristianGonzález2009,
abstract = {We obtain finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves over perfect fields. For example, if k is finitely generated over ℚ and X → C is a quadric fibration of odd relative dimension at least 11, then CH i(X) is finitely generated for i ≤ 4.},
author = {Cristian González-Avilés},
journal = {Open Mathematics},
keywords = {Chow groups; Quadrics; Curves; quadrics; curves},
language = {eng},
number = {4},
pages = {606-616},
title = {Finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves},
url = {http://eudml.org/doc/269438},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Cristian González-Avilés
TI - Finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves
JO - Open Mathematics
PY - 2009
VL - 7
IS - 4
SP - 606
EP - 616
AB - We obtain finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves over perfect fields. For example, if k is finitely generated over ℚ and X → C is a quadric fibration of odd relative dimension at least 11, then CH i(X) is finitely generated for i ≤ 4.
LA - eng
KW - Chow groups; Quadrics; Curves; quadrics; curves
UR - http://eudml.org/doc/269438
ER -
References
top- [1] Colliot-Thélène J.-L, Skorobogatov A., Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory, 1993, 7, 477–500 http://dx.doi.org/10.1007/BF00961538[Crossref] Zbl0837.14002
- [2] Conrad B., Chows K/k-image and K/k-trace, and the Lang-Néron theorem, Enseign. Math. (2), 2006, 52, 37–108
- [3] Fulton W., Intersection theory, Second Ed., Springer-Verlag, 1998 Zbl0885.14002
- [4] González-Avilés C, Algebraic cycles on Severi-Brauer schemes of prime degree over a curve, Math. Res. Lett., 2008, 15(1), 51–56 [Crossref] Zbl1146.14006
- [5] Gros M., 0-cycles de degré zéro sur les surfaces fibrées en coniques, J. Reine Angew. Math., 1987, 373, 166–184 Zbl0593.14005
- [6] Kahn B., Rost M., Sujatha R, Unramified cohomology of quadrics I, Amer. Math. J., 1998, 120(4), 841–891 http://dx.doi.org/10.1353/ajm.1998.0029[Crossref] Zbl0913.11018
- [7] Karpenko N., Algebro-geometric invariants of quadratic forms, Leningrad Math. J., 1991, 2(1), 119–138
- [8] Karpenko N., Chow groups of quadrics and the stabilization conjecture, Adv. Soviet Math., 1991, 4, 3–8 Zbl0756.14003
- [9] Karpenko N., Chow groups of quadrics and index reduction formulas, Nova J. Algebra Geom., 1995, 3(4), 357–379 Zbl0902.14006
- [10] Karpenko N., Order of torsion in CH 4 of quadrics, Doc. Math., 1996, 1, 57–65 Zbl0867.11025
- [11] Karpenko N., Merkurjev A., Chow groups of projective quadrics, Leningrad Math. J., 1991, 2(3), 655–671
- [12] Karpenko N., Merkurjev A., Rost projectors and Steenrod operations, Doc. Math., 2002, 7, 481–493 Zbl1030.11013
- [13] Lam T.Y., The algebraic theory of quadratic forms, W.A. Benjamin, Inc. Reading, Massachussettss, 1973 Zbl0259.10019
- [14] Milne J.S., Arithmetic Duality Theorems, Perspectives in Mathematics, vol. 1, Academic Press Inc., Orlando 1986 Zbl0613.14019
- [15] Parimala R., Suresh V., Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map, Invent. Math., 1995, 122, 83–117 http://dx.doi.org/10.1007/BF01231440[Crossref] Zbl0865.14002
- [16] Rost M., Chow groups with coefficients, Doc. Math., 1996, 1, 319–393 Zbl0864.14002
- [17] Sherman C., Some theorems on the K-Theory of coherent sheaves, Comm. Algebra, 1979, 7(14), 1489–1508 http://dx.doi.org/10.1080/00927877908822414[Crossref] Zbl0429.18017
- [18] Swan R., Zero-cycles on quadric hypersurfaces, Proc. Amer. Math. Soc., 1989, 107, 43–46 http://dx.doi.org/10.2307/2048032[Crossref]
- [19] Weibel C., An introduction to homological algebra, Cambridge Stud. Adv. Math., Cambridge Univ. Press, 1994, 38
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.