Almost proper GIT-stacks and discriminant avoidance.
In this work we study the moduli part in the canonical bundle formula of an lc-trivial fibration whose general fibre is a rational curve. If is the Cartier index of the fibre, it was expected that would provide a bound on the denominators of the moduli part. Here we prove that such a bound cannot even be polynomial in , we provide a bound and an example where the smallest integer that clears the denominators of the moduli part is . Moreover we prove that even locally the denominators depend...
We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...
Nous déduisons de la formule du conducteur, conjecturée par S. Bloch, celle de P. Deligne exprimant, dans le cas d'une singularité isolée, la dimension totale des cycles évanescents en fonction du nombre de Milnor. En particulier, la formule de Deligne est établie en dimension relative un; en appendice, on généralise cet énoncé au cas d'un lieu singulier propre.
Soit une variété homogène sous un groupe . Nous étudions les orbites maximales de sous l’action d’un parabolique de . Nous les décomposons en fibrations affines et projectives. Cette description permet de montrer que le schéma de Hilbert des courbes rationnelles lisses de classe fixée est non vide et irréductible.
Let S be a fibred surface. We prove that the existence of morphisms from non countably many fibres to curves implies, up to base change, the existence of a rational map from S to another surface fibred over the same base reflecting the properties of the original morphisms. Under some conditions of unicity base change is not needed and one recovers exactly the initial maps.
We prove fibration theorems on compact Kähler manifolds with conditions on first cohomology groups of fundamental groups with respect to unitary representations into Hilbert spaces. If the fundamental group T of compact Kähler manifold X violates Property (T) of Kazhdan’s, then for some unitary representation . By our earlier work there exists a -closed holomorphic 1-form with coefficients twisted by some unitary representation , possibly non-isomorphic to . Taking norms we obtains a positive...
Soit un corps de caractéristique nulle, un polynôme de Laurent en variables, à coefficients dans et non dégénéré pour son polyèdre de Newton à l’infini. Soit fonctions non constantes à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la fibre de Milnor motivique à l’infini de la composée en termes du polyèdre de Newton à l’infini de . Pour égal à la somme nous obtenons une formule...
We obtain finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves over perfect fields. For example, if k is finitely generated over ℚ and X → C is a quadric fibration of odd relative dimension at least 11, then CH i(X) is finitely generated for i ≤ 4.
Let be a smooth curve defined over the fraction field of a complete discrete valuation ring . We study a natural filtration of the special fiber of the Néron model of the Jacobian of by closed, unipotent subgroup schemes. We show that the jumps in this filtration only depend on the fiber type of the special fiber of the minimal regular model with strict normal crossings for over , and in particular are independent of the residue characteristic. Furthermore, we obtain information about...
On a general quasismooth well-formed weighted hypersurface of degree Σi=14 a i in ℙ(1, a 1, a 2, a 3, a 4), we classify all pencils whose general members are surfaces of Kodaira dimension zero.
Given a finite tame group scheme , we construct compactifications of moduli spaces of -torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.
Let a smooth projective family and a pseudo-effective line bundle on (i.e. with a non-negative curvature current ). In its works on invariance of plurigenera, Y.-T. Siu was interested in extending sections of (defined over the central fiber of the family ) to sections of . In this article we consider the following problem: to extend sections of . More precisely, we show the following result: assuming the triviality of the multiplier ideal sheaf , any section of extends to ; in other...
We prove a sufficient condition for the Jacobian problem in the setting of real, complex and mixed polynomial mappings. This follows from the study of the bifurcation locus of a mapping subject to a new Newton non-degeneracy condition.
We give a description of the Picard group of double octic Calabi-Yau threefolds using a K3 fibration defined by a singular line of the branch octic. In particular, we show that the group is generated by the Picard group of a generic fibre and the subgroup generated by the components of the reducible fibres.
We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface of Picard number one we find the following: The Kummer variety is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if is a perfect square. And this is the case if and only if carries a divisor with vanishing Beauville-Bogomolov square.
Let be a compact hyperkähler manifold containing a complex torus as a Lagrangian subvariety. Beauville posed the question whether admits a Lagrangian fibration with fibre . We show that this is indeed the case if is not projective. If is projective we find an almost holomorphic Lagrangian fibration with fibre under additional assumptions on the pair , which can be formulated in topological or deformation-theoretic terms. Moreover, we show that for any such almost holomorphic Lagrangian...