# The controlled separable projection property for Banach spaces

Open Mathematics (2011)

- Volume: 9, Issue: 6, page 1252-1266
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topJesús Ferrer, and Marek Wójtowicz. "The controlled separable projection property for Banach spaces." Open Mathematics 9.6 (2011): 1252-1266. <http://eudml.org/doc/269444>.

@article{JesúsFerrer2011,

abstract = {Let X, Y be two Banach spaces. We say that Y is a quasi-quotient of X if there is a continuous operator R: X → Y such that its range, R(X), is dense in Y. Let X be a nonseparable Banach space, and let U, W be closed subspaces of X and Y, respectively. We prove that if X has the Controlled Separable Projection Property (CSPP) (this is a weaker notion than the WCG property) and Y is a quasi-quotient of X, then the structure of Y resembles the structure of a separable Banach space: (a) Y/W is norm-separable iff its dual W ⊥ is weak*-separable, (b) every weak*-separable subset of B Y* is weak*-metrizable, (c) every weak*-null sequence in the unit sphere of Y* contains a “nice“ subsequence; and (d) if U is separable, then X/U also has the CSPP. Property (a) yields an easy way of obtaining separable quotients in a class of Banach spaces. We also study the CSPP for C(K)-spaces, where K is a Mrówka compact space, e.g., we prove that the CSPP is not a three-space property.},

author = {Jesús Ferrer, Marek Wójtowicz},

journal = {Open Mathematics},

keywords = {Controlled separable projection property; Weakly Lindelöf determined Banach space; Josefson-Nissenzweig sequence; Separable quotient problem; Mrówka space; controlled separable projection property; weakly Lindelöf determined Banach space; separable quotient problem; WCG-spaces},

language = {eng},

number = {6},

pages = {1252-1266},

title = {The controlled separable projection property for Banach spaces},

url = {http://eudml.org/doc/269444},

volume = {9},

year = {2011},

}

TY - JOUR

AU - Jesús Ferrer

AU - Marek Wójtowicz

TI - The controlled separable projection property for Banach spaces

JO - Open Mathematics

PY - 2011

VL - 9

IS - 6

SP - 1252

EP - 1266

AB - Let X, Y be two Banach spaces. We say that Y is a quasi-quotient of X if there is a continuous operator R: X → Y such that its range, R(X), is dense in Y. Let X be a nonseparable Banach space, and let U, W be closed subspaces of X and Y, respectively. We prove that if X has the Controlled Separable Projection Property (CSPP) (this is a weaker notion than the WCG property) and Y is a quasi-quotient of X, then the structure of Y resembles the structure of a separable Banach space: (a) Y/W is norm-separable iff its dual W ⊥ is weak*-separable, (b) every weak*-separable subset of B Y* is weak*-metrizable, (c) every weak*-null sequence in the unit sphere of Y* contains a “nice“ subsequence; and (d) if U is separable, then X/U also has the CSPP. Property (a) yields an easy way of obtaining separable quotients in a class of Banach spaces. We also study the CSPP for C(K)-spaces, where K is a Mrówka compact space, e.g., we prove that the CSPP is not a three-space property.

LA - eng

KW - Controlled separable projection property; Weakly Lindelöf determined Banach space; Josefson-Nissenzweig sequence; Separable quotient problem; Mrówka space; controlled separable projection property; weakly Lindelöf determined Banach space; separable quotient problem; WCG-spaces

UR - http://eudml.org/doc/269444

ER -

## References

top- [1] Argyros S., Mercourakis S., On weakly Lindelöf Banach spaces, Rocky Mountain J. Math., 1993, 23(2), 395–446 http://dx.doi.org/10.1216/rmjm/1181072569 Zbl0797.46009
- [2] Banakh T., Plichko A., Zagorodnyuk A., Zeros of quadratic functionals on non-separable spaces, Colloq. Math., 2004, 100(1), 141–147 http://dx.doi.org/10.4064/cm100-1-13 Zbl1066.46040
- [3] Castillo J.M.F., González M., Three-Space Problems in Banach Space Theory, Lecture Notes in Math., 1667, Springer, Berlin-Heidelberg-New York, 1997 Zbl0914.46015
- [4] Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monogr. Surveys Pure Appl. Math., 64, Scientific & Technical, Harlow, 1993 Zbl0782.46019
- [5] van Douwen E.K., The integers and topology, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam-New York-Oxford, 1984, 111–167
- [6] Dow A., Vaughan J.E., Mrówka maximal almost disjoint families for uncountable cardinals, Topology Appl., 2010, 157(8), 1379–1394 http://dx.doi.org/10.1016/j.topol.2009.08.024 Zbl1196.54060
- [7] Fajardo R.A.S., An indecomposable Banach space of continuous functions which has small density, Fund. Math., 2009, 202(1), 43–63 http://dx.doi.org/10.4064/fm202-1-2 Zbl1159.03034
- [8] Ferrer J., Zeros of real polynomials on C(K)-spaces, J. Math. Anal. Appl., 2007, 336(2), 788–796 http://dx.doi.org/10.1016/j.jmaa.2007.02.083 Zbl1161.46024
- [9] Ferrer J., On the controlled separable projection property for some C(K) spaces, Acta Math. Hungar., 2009, 124(1–2), 145–154 http://dx.doi.org/10.1007/s10474-009-8165-3 Zbl1265.26009
- [10] Ferrer J., Kakol J., López Pellicer M., Wójtowicz M., On a three-space property for Lindelöf Σ-spaces, (WCG)-spaces, and the Sobczyk property, Funct. Approx. Comment. Math., 2011, 44(2), 289–306 Zbl1234.46018
- [11] Finol C., Wójtowicz M., The structure of nonseparable Banach spaces with uncountable unconditional bases, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RASCAM, 2005, 99(1), 15–22 Zbl1098.46015
- [12] Frankiewicz R., Zbierski P., Hausdorff Gaps and Limits, Stud. Logic Found. Math., 132, North-Holland, Amsterdam, 1994 http://dx.doi.org/10.1016/S0049-237X(08)70177-0 Zbl0821.54001
- [13] Hagler J., Sullivan F., Smoothness and weak* sequential compactness, Proc. Amer. Math. Soc., 1980, 78(4), 497–503 Zbl0463.46010
- [14] Hrušák H., Szeptycki P.J., Tamariz-Mascarúa Á., Spaces of continuous functions defined on Mrówka spaces, Topology Appl., 2005, 148, 239–252 http://dx.doi.org/10.1016/j.topol.2004.09.009 Zbl1068.54022
- [15] Johnson W.B., On quasi-complements, Pacific J. Math., 1973, 48(1), 113–118 Zbl0283.46008
- [16] Johnson W.B., Rosenthal H.P., On Ω*-basic sequences and their applications to the study of Banach spaces, Studia Math., 1972, 43, 77–92
- [17] Josefson B., Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Math., 1975, 13, 79–89 http://dx.doi.org/10.1007/BF02386198 Zbl0303.46018
- [18] Kalton N.J., Peck N.T., Twisted sums of sequence spaces and the three-space problem, Trans. Amer. Math. Soc., 1979, 255, 1–30 http://dx.doi.org/10.1090/S0002-9947-1979-0542869-X Zbl0424.46004
- [19] Koszmider P., Banach spaces of continuous functions with few operators, Math. Ann., 2004, 330(1), 151–183 http://dx.doi.org/10.1007/s00208-004-0544-z Zbl1064.46009
- [20] Kuratowski K., Mostowski A., Set Theory, 2nd ed., Polish Scientific Publishers, Warsaw, 1976
- [21] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. I, Ergeb. Math. Grenzgeb., 92, Springer, Berlin, 1977 Zbl0362.46013
- [22] Mrówka S., On completely regular spaces, Fund. Math., 1954, 41, 105–106 Zbl0055.41304
- [23] Mrówka S., Some set-theoretic constructions in topology, Fund. Math., 1977, 94(2), 83–92 Zbl0348.54017
- [24] Mujica J., Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid, 1997, 10(2), 299–330 Zbl0908.46007
- [25] Nissenzweig A., w* sequential convergence, Israel J. Math., 1975, 22(3–4), 266–272 http://dx.doi.org/10.1007/BF02761594
- [26] Pełczynski A., Projections in certain Banach spaces, Studia Math., 1960, 19, 209–228 Zbl0104.08503
- [27] Plebanek G., A construction of a Banach space C(K) with few operators, Topology Appl., 2004, 143, 217–239 http://dx.doi.org/10.1016/j.topol.2004.03.001 Zbl1064.46011
- [28] Rosenthal H.P., On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 1970, 37, 13–36 Zbl0227.46027
- [29] Rudin W., Functional Analysis, 2nd ed., Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1991
- [30] Saxon S.A., Wilansky A., The equivalence of some Banach space problems, Colloq. Math., 1977, 37(2), 217–226 Zbl0373.46027
- [31] Semadeni Z., Banach Spaces of Continuous Functions. I, Monogr. Mat., 55, Polish Scientific Publishers, Warszawa, 1971 Zbl0225.46030
- [32] Sliwa W., (LF)-Spaces and the Separable Quotient Problem, Ph.D. thesis, Adam Mickiewicz University, Poznan, 1996 (in Polish)
- [33] Valdivia M., Resolutions of the identity in certain Banach spaces, Collect. Math., 1988, 39(2), 127–140 Zbl0718.46006
- [34] Vašák L., On one generalization of weakly compactly generated Banach spaces, Studia Math., 1981, 70(1), 11–19 Zbl0376.46012
- [35] Walker R.C., The Stone-Čech Compactification, Ergeb. Math. Grenzgeb., 83, Springer, Berlin-Heidelberg-New York, 1974 Zbl0292.54001
- [36] Wójtowicz M., Effective constructions of separable quotients of Banach spaces, Collect. Math., 1997, 48(4–6), 809–815 Zbl0903.46016
- [37] Wójtowicz M., Generalizations of the c 0-ℓ 1-ℓ ∞ theorem of Bessaga and Pełczynski, Bull. Polish Acad. Sci. Math., 2002, 50(4), 373–382
- [38] Wójtowicz M., Reflexivity and the separable quotient problem for a class of Banach spaces, Bull. Polish Acad. Sci. Math., 2002, 50(4), 383–394 Zbl1031.46009
- [39] Zizler V., Nonseparable Banach Spaces, In: Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, 1743–1816 http://dx.doi.org/10.1016/S1874-5849(03)80048-7 Zbl1041.46009

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.