Finite-tight sets

Liviu Florescu

Open Mathematics (2007)

  • Volume: 5, Issue: 4, page 619-638
  • ISSN: 2391-5455

Abstract

top
We introduce two notions of tightness for a set of measurable functions - the finite-tightness and the Jordan finite-tightness with the aim to extend certain compactness results (as biting lemma or Saadoune-Valadier’s theorem of stable compactness) to the unbounded case. These compactness conditions highlight their utility when we look for some alternatives to Rellich-Kondrachov theorem or relaxed lower semicontinuity of multiple integrals. Finite-tightness locates the great growths of a set of measurable mappings on a finite family of sets of small measure. In the Euclidean case, the Jordan finite-tight sets form a subclass of finite-tight sets for which the finite family of sets of small measure is composed by d-dimensional intervals. The main result affirms that each tight set H ⊆ W 1,1 for which the set of the gradients ∇H is a Jordan finite-tight set is relatively compact in measure. This result offers very good conditions to use fiber product lemma for obtaining a relaxed lower semicontinuity condition.

How to cite

top

Liviu Florescu. "Finite-tight sets." Open Mathematics 5.4 (2007): 619-638. <http://eudml.org/doc/269450>.

@article{LiviuFlorescu2007,
abstract = {We introduce two notions of tightness for a set of measurable functions - the finite-tightness and the Jordan finite-tightness with the aim to extend certain compactness results (as biting lemma or Saadoune-Valadier’s theorem of stable compactness) to the unbounded case. These compactness conditions highlight their utility when we look for some alternatives to Rellich-Kondrachov theorem or relaxed lower semicontinuity of multiple integrals. Finite-tightness locates the great growths of a set of measurable mappings on a finite family of sets of small measure. In the Euclidean case, the Jordan finite-tight sets form a subclass of finite-tight sets for which the finite family of sets of small measure is composed by d-dimensional intervals. The main result affirms that each tight set H ⊆ W 1,1 for which the set of the gradients ∇H is a Jordan finite-tight set is relatively compact in measure. This result offers very good conditions to use fiber product lemma for obtaining a relaxed lower semicontinuity condition.},
author = {Liviu Florescu},
journal = {Open Mathematics},
keywords = {finite-tight set; Jordan finite-tight set; Young measure; w2 - convergence},
language = {eng},
number = {4},
pages = {619-638},
title = {Finite-tight sets},
url = {http://eudml.org/doc/269450},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Liviu Florescu
TI - Finite-tight sets
JO - Open Mathematics
PY - 2007
VL - 5
IS - 4
SP - 619
EP - 638
AB - We introduce two notions of tightness for a set of measurable functions - the finite-tightness and the Jordan finite-tightness with the aim to extend certain compactness results (as biting lemma or Saadoune-Valadier’s theorem of stable compactness) to the unbounded case. These compactness conditions highlight their utility when we look for some alternatives to Rellich-Kondrachov theorem or relaxed lower semicontinuity of multiple integrals. Finite-tightness locates the great growths of a set of measurable mappings on a finite family of sets of small measure. In the Euclidean case, the Jordan finite-tight sets form a subclass of finite-tight sets for which the finite family of sets of small measure is composed by d-dimensional intervals. The main result affirms that each tight set H ⊆ W 1,1 for which the set of the gradients ∇H is a Jordan finite-tight set is relatively compact in measure. This result offers very good conditions to use fiber product lemma for obtaining a relaxed lower semicontinuity condition.
LA - eng
KW - finite-tight set; Jordan finite-tight set; Young measure; w2 - convergence
UR - http://eudml.org/doc/269450
ER -

References

top
  1. [1] J.K. Brooks and R.V. Chacon: “Continuity and compactness of measures”, Adv. in Math., Vol. 37, (1980), pp. 16–26. http://dx.doi.org/10.1016/0001-8708(80)90023-7 Zbl0463.28003
  2. [2] Ch. Castaing and P. Raynaud de Fitte: “On the fiber product of Young measures with application to a control problem with measures”, Adv. Math. Econ., Vol. 6, (2004), pp. 1–38. Zbl1137.28300
  3. [3] Ch. Castaing, P. Raynaud de Fitte and A. Salvadori: “Some variational convergence results for a class of evolution inclusions of second order using Young measures”, Adv. Math. Econ., Vol. 7, (2005), pp. 1–32. http://dx.doi.org/10.1007/4-431-27233-X_1 Zbl1145.49005
  4. [4] Ch. Castaing, P. Raynaud de Fitte and M. Valadier: Young measures on topological spaces. With applications in control theory and probability theory, Kluwer Academic Publishers, Dordrecht, 2004. 
  5. [5] Ch. Castaing and M. Valadier: Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. 
  6. [6] J. Diestel and J.J. Uhl: Vector Measures, Mathematical Surveys, no. 15, American Mathematical Society, Providence, Rhode Island, 1977. Zbl0369.46039
  7. [7] N. Dunford and J.T. Schwartz: Linear Operators. Part I, Reprint of the 1958 original, Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1988. 
  8. [8] L.C. Florescu and C. Godet-Thobie: “A Version of Biting Lemma for Unbounded Sequences in L E1 with Applications”, AIP Conference Proceedings, no. 835, (2006), pp. 58–73. 
  9. [9] J. Hoffmann-Jørgensen: “Convergence in law of random elements and random sets”, High dimensional probability (Oberwolfach, 1996), Progress in Probability, no. 43, Birkhäuser, Basel, 1998, pp. 151–189. 
  10. [10] M. Saadoune and M. Valadier: “Extraction of a good subsequence from a bounded sequence of integrable functions”, J. Convex Anal., Vol. 2, (1995), pp. 345–357. Zbl0833.46018
  11. [11] M. Valadier: “A course on Young measures”, Rend. Istit. Mat. Univ. Trieste, Vol. 26, (1994), suppl., pp. 349–394. Zbl0880.49013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.