A Choquet Ordering and Unique Decompositions in Convex sets of Tight Measures
A new criterion of asymptotic periodicity of Markov operators on , established in [3], is extended to the class of Markov operators on signed measures.
It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure of the linear span of the maps x ↦ d(x,a) - d(x,b), where d is the metric of the Urysohn space of diameter r, is (isometrically if r = +∞) isomorphic to the space of equivalence classes of all real-valued Lipschitz maps on . The space of all signed (real-valued) Borel measures on is isometrically embedded in the dual space of and it is shown that the image of the embedding...
We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals on...
Given a complete and separable metric space , we study the weak convergence of sequences of measures defined on the space of all real-valued lower semicontinuous functions on as well as on the space of all closed subsets of .
Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no -points.
Let (Ω,Σ,μ) be a complete finite measure space and X a Banach space. We show that the space of all weakly μ-measurable (classes of scalarly equivalent) X-valued Pettis integrable functions with integrals of finite variation, equipped with the variation norm, contains a copy of if and only if X does.