The set of toric minimal log discrepancies
Open Mathematics (2006)
- Volume: 4, Issue: 3, page 358-370
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topFlorin Ambro. "The set of toric minimal log discrepancies." Open Mathematics 4.3 (2006): 358-370. <http://eudml.org/doc/269461>.
@article{FlorinAmbro2006,
abstract = {We describe the set of minimal log discrepancies of toric log varieties, and study its accumulation points.},
author = {Florin Ambro},
journal = {Open Mathematics},
keywords = {14B05; 14M25},
language = {eng},
number = {3},
pages = {358-370},
title = {The set of toric minimal log discrepancies},
url = {http://eudml.org/doc/269461},
volume = {4},
year = {2006},
}
TY - JOUR
AU - Florin Ambro
TI - The set of toric minimal log discrepancies
JO - Open Mathematics
PY - 2006
VL - 4
IS - 3
SP - 358
EP - 370
AB - We describe the set of minimal log discrepancies of toric log varieties, and study its accumulation points.
LA - eng
KW - 14B05; 14M25
UR - http://eudml.org/doc/269461
ER -
References
top- [1] V. Alexeev: “Two two-dimensional terminations”, Duke Math. J., Vol. 69(3), (1993), pp. 527–545. http://dx.doi.org/10.1215/S0012-7094-93-06922-0 Zbl0791.14006
- [2] F. Ambro: “On minimal log discrepancies”, Math. Res. Lett., Vol. 6(5–6), (1999), pp. 573–580. Zbl0974.14007
- [3] A. Borisov: “Minimal discrepancies of toric singularities”, Manuscripta Math., Vol. 92(1), (1997), pp. 33–45. Zbl0873.14003
- [4] A. Borisov: “On classification of toric singularities”, Algebraic geom., Vol. 9; J. Math. Sci. (New York), Vol. 94(1), (1999), pp. 1111–1113. Zbl0934.14035
- [5] J.W.S. Cassels: An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 45, Cambridge University Press, New York, 1957.
- [6] J. Lawrence: Finite unions of closed subgroups of the n-dimensional torus, Applied geometry and discrete mathematics, 433–441, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991. Zbl0738.52016
- [7] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988. Zbl0628.52002
- [8] V.V. Shokurov: Problems about Fano varieties, Birational Geometry of Algebraic Varieties, Open Problems-Katata, 1988, pp. 30–32.
- [9] V.V. Shokurov: A.c.c. in codimension 2, preprint 1993.
- [10] V.V. Shokurov: “Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips”, Tr. Mat. Inst. Steklova (Russian), Vol. 246 (2004); Algebr. Geom. Metody, Svyazi i Prilozh., pp. 328-351; translation in: Proc. Steklov Inst. Math., Vol. 3(246), 2004, pp. 315–336. Zbl1107.14012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.