The set of toric minimal log discrepancies
Open Mathematics (2006)
- Volume: 4, Issue: 3, page 358-370
 - ISSN: 2391-5455
 
Access Full Article
topAbstract
topHow to cite
topFlorin Ambro. "The set of toric minimal log discrepancies." Open Mathematics 4.3 (2006): 358-370. <http://eudml.org/doc/269461>.
@article{FlorinAmbro2006,
	abstract = {We describe the set of minimal log discrepancies of toric log varieties, and study its accumulation points.},
	author = {Florin Ambro},
	journal = {Open Mathematics},
	keywords = {14B05; 14M25},
	language = {eng},
	number = {3},
	pages = {358-370},
	title = {The set of toric minimal log discrepancies},
	url = {http://eudml.org/doc/269461},
	volume = {4},
	year = {2006},
}
TY  - JOUR
AU  - Florin Ambro
TI  - The set of toric minimal log discrepancies
JO  - Open Mathematics
PY  - 2006
VL  - 4
IS  - 3
SP  - 358
EP  - 370
AB  - We describe the set of minimal log discrepancies of toric log varieties, and study its accumulation points.
LA  - eng
KW  - 14B05; 14M25
UR  - http://eudml.org/doc/269461
ER  - 
References
top- [1] V. Alexeev: “Two two-dimensional terminations”, Duke Math. J., Vol. 69(3), (1993), pp. 527–545. http://dx.doi.org/10.1215/S0012-7094-93-06922-0 Zbl0791.14006
 - [2] F. Ambro: “On minimal log discrepancies”, Math. Res. Lett., Vol. 6(5–6), (1999), pp. 573–580. Zbl0974.14007
 - [3] A. Borisov: “Minimal discrepancies of toric singularities”, Manuscripta Math., Vol. 92(1), (1997), pp. 33–45. Zbl0873.14003
 - [4] A. Borisov: “On classification of toric singularities”, Algebraic geom., Vol. 9; J. Math. Sci. (New York), Vol. 94(1), (1999), pp. 1111–1113. Zbl0934.14035
 - [5] J.W.S. Cassels: An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 45, Cambridge University Press, New York, 1957.
 - [6] J. Lawrence: Finite unions of closed subgroups of the n-dimensional torus, Applied geometry and discrete mathematics, 433–441, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991. Zbl0738.52016
 - [7] T. Oda: Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Springer-Verlag, Berlin, 1988. Zbl0628.52002
 - [8] V.V. Shokurov: Problems about Fano varieties, Birational Geometry of Algebraic Varieties, Open Problems-Katata, 1988, pp. 30–32.
 - [9] V.V. Shokurov: A.c.c. in codimension 2, preprint 1993.
 - [10] V.V. Shokurov: “Letters of a bi-rationalist. V. Minimal log discrepancies and termination of log flips”, Tr. Mat. Inst. Steklova (Russian), Vol. 246 (2004); Algebr. Geom. Metody, Svyazi i Prilozh., pp. 328-351; translation in: Proc. Steklov Inst. Math., Vol. 3(246), 2004, pp. 315–336. Zbl1107.14012
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.