On some problems involving Hardy’s function
Open Mathematics (2010)
- Volume: 8, Issue: 6, page 1029-1040
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topAleksandar Ivić. "On some problems involving Hardy’s function." Open Mathematics 8.6 (2010): 1029-1040. <http://eudml.org/doc/269466>.
@article{AleksandarIvić2010,
abstract = {Some problems involving the classical Hardy function \[ Z\left( t \right) = \zeta \left( \{\frac\{1\}\{2\} + it\} \right)\left( \{\chi \left( \{\frac\{1\}\{2\} + it\} \right)\} \right)^\{ - \{1 \mathord \{\left\bad. \{\vphantom\{1 2\}\} \right. \hspace\{0.0pt\}\} 2\}\} , \zeta \left( s \right) = \chi \left( s \right) \zeta \left( \{1 - s\} \right) \]
, are discussed. In particular we discuss the odd moments of Z(t) and the distribution of its positive and negative values.},
author = {Aleksandar Ivić},
journal = {Open Mathematics},
keywords = {Hardy’s function; Riemann zeta-function; Distribution of values; Hardy's function},
language = {eng},
number = {6},
pages = {1029-1040},
title = {On some problems involving Hardy’s function},
url = {http://eudml.org/doc/269466},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Aleksandar Ivić
TI - On some problems involving Hardy’s function
JO - Open Mathematics
PY - 2010
VL - 8
IS - 6
SP - 1029
EP - 1040
AB - Some problems involving the classical Hardy function \[ Z\left( t \right) = \zeta \left( {\frac{1}{2} + it} \right)\left( {\chi \left( {\frac{1}{2} + it} \right)} \right)^{ - {1 \mathord {\left\bad. {\vphantom{1 2}} \right. \hspace{0.0pt}} 2}} , \zeta \left( s \right) = \chi \left( s \right) \zeta \left( {1 - s} \right) \]
, are discussed. In particular we discuss the odd moments of Z(t) and the distribution of its positive and negative values.
LA - eng
KW - Hardy’s function; Riemann zeta-function; Distribution of values; Hardy's function
UR - http://eudml.org/doc/269466
ER -
References
top- [1] Feng S., Zeros of the Riemann zeta function on the critical line, preprint available at http://arxiv.org/abs/1003.0059 Zbl1333.11086
- [2] Hafner J.L., Ivić A., On some mean value results for the Riemann zeta-function, Théorie des nombres, Quebec, 1987, de Gruyter, Berlin-New York, 1989, 348–358
- [3] Hafner J.L., Ivić A., On the mean square of the Riemann zeta-function on the critical line, J. Number Theory, 1989, 32(2), 151–191 http://dx.doi.org/10.1016/0022-314X(89)90024-3
- [4] Heath-Brown D.R., The distribution and moments of the error term in the Dirichlet divisor problems, Acta Arith., 1992, 60(4), 389–415 Zbl0725.11045
- [5] Heath-Brown D.R., Tsang K., Sign changes of E(T), Δ(x), and P(x), J. Number Theory, 1994, 49(1), 73–83 http://dx.doi.org/10.1006/jnth.1994.1081
- [6] Hejhal D.A., On a result of Selberg concerning zeros of linear combinations of L-functions, Internat. Math. Res. Notices, 2000, 11, 551–577 http://dx.doi.org/10.1155/S1073792800000301 Zbl1159.11318
- [7] Ivić A., The Riemann Zeta-Function, Wiley-Intersci. Publ., John Wiley & Sons, New York, 1985 Zbl0556.10026
- [8] Ivić A., On sums of gaps between the zeros of ζ(s) on the critical line, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 1995, 6, 55–62 Zbl0838.11055
- [9] Ivić A., On small values of the Riemann zeta-function on the critical line and gaps between zeros, Liet. Mat. Rink., 2002, 42(1), 31–45 Zbl1026.11071
- [10] Ivić A., On the integral of Hardy’s function, Arch. Math. (Basel), 2004, 83(1), 41–47 Zbl1168.11319
- [11] Ivić A., On the mean square of the divisor function in short intervals, J. Théor. Nombres Bordeaux, 2009, 21(2), 251–261 Zbl1222.11115
- [12] Ivić A., On the Mellin transforms of powers of Hardy’s function, Hardy-Ramanujan J., 2010, 33, 32–58 Zbl1200.11062
- [13] Jutila M., Atkinson’s formula for Hardy’s function, J. Number Theory, 2009, 129(11), 2853–2878 http://dx.doi.org/10.1016/j.jnt.2009.02.011 Zbl1232.11083
- [14] Jutila M., An asymptotic formula for the primitive of Hardy’s function, Ark. Mat., DOI: 10.1007/s11512-010-0122-4 Zbl1241.11100
- [15] Kalpokas J., Steuding J., On the value distribution of the Riemann zeta-function on the critical line, preprint available at http://arxiv.org/abs/0907.1910 Zbl1302.11060
- [16] Keating J.P., Snaith N.C., Random matrix theory and L-functions at s = 1/2, Comm. Math. Phys., 2000, 214(1), 91–110 http://dx.doi.org/10.1007/s002200000262 Zbl1051.11047
- [17] Korolëv M.A., On the integral of the Hardy function Z(t), Izv. Math., 2008, 72(3), 429–478 http://dx.doi.org/10.1070/IM2008v072n03ABEH002407 Zbl1239.11091
- [18] Montgomery H.L., The pair correlation of zeros of the zeta-function, In: Analytic number theory, St. Louis, 1972, Proc. Sympos. Pure Math., 24, AMS, Providence, 1973, 181–193
- [19] Odlyzko A.M., On the distribution of spacings between zeros of the zeta function, Math. Comp., 1987, 48(177), 273–308 Zbl0615.10049
- [20] Odlyzko A.M., The 1020-th zero of the Riemann zeta-function and 175 million of its neighbors, preprint available at http://www.dtc.umn.edu/sodlyzko/unpublished/zeta.10to20.1992.pdf
- [21] Ramachandra K., On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Tata Inst. Fund. Res. Lectures on Math. and Phys., 85, Tata Institute of Fundamental Research, Bombay, 1995 Zbl0845.11003
- [22] Selberg A., Collected Papers. Vol. 1, Springer, Berlin, 1989 Zbl0669.12001
- [23] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University Press, New York, 1986 Zbl0601.10026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.