# On the mean square of the divisor function in short intervals

• [1] Katedra Matematike RGF-a Universitet u Beogradu, Đušina 7 11000 Beograd, Serbia
• Volume: 21, Issue: 2, page 251-261
• ISSN: 1246-7405

top

## Abstract

top
We provide upper bounds for the mean square integral${\int }_{X}^{2X}{\left({𝔻}_{k}\left(x+h\right)-{𝔻}_{k}\left(x\right)\right)}^{2}\phantom{\rule{0.166667em}{0ex}}\mathrm{d}x,$where $h=h\left(X\right)\gg 1,\phantom{\rule{0.277778em}{0ex}}h=o\left(x\right)\phantom{\rule{0.277778em}{0ex}}\mathrm{as}\phantom{\rule{0.277778em}{0ex}}X\to \infty$ and $h$ lies in a suitable range. For $k\ge 2$ a fixed integer, ${𝔻}_{k}\left(x\right)$ is the error term in the asymptotic formula for the summatory function of the divisor function ${d}_{k}\left(n\right)$, generated by ${\zeta }^{k}\left(s\right)$.

## How to cite

top

Ivić, Aleksandar. "On the mean square of the divisor function in short intervals." Journal de Théorie des Nombres de Bordeaux 21.2 (2009): 251-261. <http://eudml.org/doc/10879>.

@article{Ivić2009,
abstract = {We provide upper bounds for the mean square integral$\int \_X^\{2X\}\left(\mathbb\{D\}\_k(x+h) - \mathbb\{D\}\_k(x)\right)^2\,\{\textrm\{d\}\}x,$where $h = h(X)\gg 1,\; h = o(x)\; \{\rm \{as\}\}\;X\rightarrow \infty$ and $h$ lies in a suitable range. For $k\ge 2$ a fixed integer, $\mathbb\{D\}_k(x)$ is the error term in the asymptotic formula for the summatory function of the divisor function $d_k(n)$, generated by $\zeta ^k(s)$.},
affiliation = {Katedra Matematike RGF-a Universitet u Beogradu, Đušina 7 11000 Beograd, Serbia},
author = {Ivić, Aleksandar},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {mean-square; divisor functions; short intervals},
language = {eng},
number = {2},
pages = {251-261},
publisher = {Université Bordeaux 1},
title = {On the mean square of the divisor function in short intervals},
url = {http://eudml.org/doc/10879},
volume = {21},
year = {2009},
}

TY - JOUR
AU - Ivić, Aleksandar
TI - On the mean square of the divisor function in short intervals
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2009
PB - Université Bordeaux 1
VL - 21
IS - 2
SP - 251
EP - 261
AB - We provide upper bounds for the mean square integral$\int _X^{2X}\left(\mathbb{D}_k(x+h) - \mathbb{D}_k(x)\right)^2\,{\textrm{d}}x,$where $h = h(X)\gg 1,\; h = o(x)\; {\rm {as}}\;X\rightarrow \infty$ and $h$ lies in a suitable range. For $k\ge 2$ a fixed integer, $\mathbb{D}_k(x)$ is the error term in the asymptotic formula for the summatory function of the divisor function $d_k(n)$, generated by $\zeta ^k(s)$.
LA - eng
KW - mean-square; divisor functions; short intervals
UR - http://eudml.org/doc/10879
ER -

## References

top
1. G. Coppola, S. Salerno, On the symmetry of the divisor function in almost all short intervals. Acta Arith. 113(2004), 189–201. Zbl1122.11062MR2049565
2. A. Ivić, The Riemann zeta-function. John Wiley & Sons, New York, 1985 (2nd ed., Dover, Mineola, N.Y., 2003). Zbl0556.10026MR792089
3. A. Ivić, On the divisor function and the Riemann zeta-function in short intervals. To appear in the Ramanujan Journal, see arXiv:0707.1756. Zbl1226.11086
4. M. Jutila, On the divisor problem for short intervals. Ann. Univer. Turkuensis Ser. A I 186 (1984), 23–30. Zbl0536.10032MR748516
5. P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313 (1980), 161–170. Zbl0412.10030MR552470
6. E.C. Titchmarsh, The theory of the Riemann zeta-function (2nd ed.). University Press, Oxford, 1986. Zbl0601.10026MR882550
7. W. Zhang, On the divisor problem. Kexue Tongbao 33 (1988), 1484–1485. MR969977

top

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.