On the mean square of the divisor function in short intervals
- [1] Katedra Matematike RGF-a Universitet u Beogradu, Đušina 7 11000 Beograd, Serbia
Journal de Théorie des Nombres de Bordeaux (2009)
- Volume: 21, Issue: 2, page 251-261
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Coppola, S. Salerno, On the symmetry of the divisor function in almost all short intervals. Acta Arith. 113(2004), 189–201. Zbl1122.11062MR2049565
- A. Ivić, The Riemann zeta-function. John Wiley & Sons, New York, 1985 (2nd ed., Dover, Mineola, N.Y., 2003). Zbl0556.10026MR792089
- A. Ivić, On the divisor function and the Riemann zeta-function in short intervals. To appear in the Ramanujan Journal, see arXiv:0707.1756. Zbl1226.11086
- M. Jutila, On the divisor problem for short intervals. Ann. Univer. Turkuensis Ser. A I 186 (1984), 23–30. Zbl0536.10032MR748516
- P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math. 313 (1980), 161–170. Zbl0412.10030MR552470
- E.C. Titchmarsh, The theory of the Riemann zeta-function (2nd ed.). University Press, Oxford, 1986. Zbl0601.10026MR882550
- W. Zhang, On the divisor problem. Kexue Tongbao 33 (1988), 1484–1485. MR969977